Solveeit Logo

Question

Question: Convert into polar form \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\]....

Convert into polar form z=i1cosπ3+isinπ3z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}.

Explanation

Solution

First we will first use the value of π\pi in the given equation to simplify the given equation by rationalizing it. Then compare the real and imaginary values of the obtained equation the polar form of z=rcosθ+isinθz = r\cos \theta + i\sin \theta to find the required values.

Complete step by step solution: We are given that z=i1cosπ3+isinπ3z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}.

Using the value of π\pi in the above equation, we get

z=i1cos(1803)+isin(1803) z=i1cos60+isin60 z=i112+i32 z=i11+i32 z=2(i1)1+3i  \Rightarrow z = \dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}} \\\ \Rightarrow z = \dfrac{{i - 1}}{{\cos 60^\circ + i\sin 60^\circ }} \\\ \Rightarrow z = \dfrac{{i - 1}}{{\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}}} \\\ \Rightarrow z = \dfrac{{i - 1}}{{\dfrac{{1 + i\sqrt 3 }}{2}}} \\\ \Rightarrow z = \dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \\\

Rationalizing the above equation by multiplying the numerator and denominator with 13i1 - \sqrt 3 i, we get

z=2(i1)×(13i)(1+3i)×(13i) z=2(i1)×(13i)12(3i)2 z=2[1+i+3i3i(i2)]123i2  \Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right) \times \left( {1 - \sqrt 3 i} \right)}} \\\ \Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\\ \Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{{1^2} - 3{i^2}}} \\\

Putting i2=1{i^2} = - 1 in the above equation, we get

z=2[1+i+3i3(1)]13(1) z=2[1+i+3i+3]1+3 z=2[1+i+3i+3]4 z=[1+i+3i+3]2 z=312+i3+12 .......eq.(1)  \Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 \left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\\ \Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\\ \Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{4} \\\ \Rightarrow z = \dfrac{{\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{2} \\\ \Rightarrow z = \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}{\text{ .......eq.(1)}} \\\

Let us assume that the polar form be
z=r(cosθ+isinθ) ......eq.(2)z = r\left( {\cos \theta + i\sin \theta } \right){\text{ ......eq.(2)}}

From equation (1) and equation (2), we get

312+i3+12=r(cosθ+isinθ) 312+i3+12=rcosθ+irsinθ ......eq.(3)  \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + i\sin \theta } \right) \\\ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta {\text{ ......eq.(3)}} \\\

Comparing the real parts in the above equation (3), we get
312=rcosθ\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta

Squaring the above equation on both sides, we get

(312)2=(rcosθ)2 (31)222=r2cos2θ (3)2+1234=r2cos2θ 3+1234=r2cos2θ 4234=r2cos2θ ......eq.(4)  \Rightarrow {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\\ \Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\\ \Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\\ \Rightarrow \dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\\ \Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ ......eq.(4)}} \\\

Comparing the imaginary parts in the equation (3), we get
3+12=rsinθ\Rightarrow \dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta

Squaring the above equation on both sides, we get

(3+12)2=(rsinθ)2 (3+1)222=r2sin2θ (3)2+1+234=r2sin2θ 3+1+234=r2sin2θ 4+234=r2sin2θ .......eq.(5)  \Rightarrow {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\\ \Rightarrow \dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\\ \Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\\ \Rightarrow \dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\\ \Rightarrow \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ .......eq.(5)}} \\\

Adding the equation (3) and (4), we get

4234+4+234=r2cos2θ+r2sin2θ 423+4+234=r2(cos2θ+sin2θ) 84=r2(cos2θ+sin2θ) 2=r2(cos2θ+sin2θ)  \Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\\ \Rightarrow \dfrac{{4 - 2\sqrt 3 + 4 + 2\sqrt 3 }}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\\ \Rightarrow \dfrac{8}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\\ \Rightarrow 2 = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\\

Using cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 in the above equation, we get

2=r2(1) 2=r2  \Rightarrow 2 = {r^2}\left( 1 \right) \\\ \Rightarrow 2 = {r^2} \\\

Taking square root on both sides in the above equation, we get

2=r r=2  \Rightarrow \sqrt 2 = r \\\ \Rightarrow r = \sqrt 2 \\\

Substituting the value of rr in the equation (3), we get
312+i3+12=2cosθ+2isinθ\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \cos \theta + \sqrt 2 i\sin \theta

Dividing the above equation by 2\sqrt 2 on both sides, we get
3122+i3+122=cosθ+isinθ .......eq.(6)\Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \theta + i\sin \theta {\text{ .......eq.(6)}}

Comparing the real parts in the above equation (6), we get
3122=cosθ\Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta

Comparing the imaginary parts in the equation (6), we get
3+122=sinθ\Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta

Thus, the polar form is z=2(cos5π12+isin5π12)z = \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right).

Note: In solving these types of questions, students should know the standard form of the polar form of the equation is z=rcosθ+isinθz = r\cos \theta + i\sin \theta . Whenever we have asked to convert the complex number to polar coordinates, we try to convert in z=rcosθ+isinθz = r\cos \theta + i\sin \theta form.