Solveeit Logo

Question

Mathematics Question on Matrices

Construct a 3×4 matrix, whose elements are given by
I. aij=123i+ja_{ij}=\frac{1}{2}\mid -3i+j\mid
II. aij=2ija_{ij}=2i-j

Answer

In general, a 3 × 4 matrix is given by A=[a11a12a13a14\[0.3em]a21a22a23a24\[0.3em]a31a32a33a34]\begin{bmatrix} a_{11} & a_{12} & a_{13} &a_{14} \\\[0.3em] a_{21} & a_{22} & a_{23}&a_{24} \\\[0.3em] a_{31} & a_{32} & a_{33} &a_{34} \end{bmatrix}


(i) aij=3i+j,i=1,2,3andj=1,2,3,4a_{ij}=\mid-3i+j\mid,i=1,2,3\,and\,j=1,2,3,4
Therefore a11=123×1+1=123+1=122=22=1a_{11}=\frac{1}{2}|-3\times1+1|=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{2}{2}=1
a21=123×2+1=126+1=125=52a_{21}=\frac{1}{2}|-3 \times 2+1|=\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\frac{5}{2}
a31=123×3+1=129+1=128=82=4a_{31}=\frac{1}{2}|-3\times3+1|=\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=\frac{8}{2}=4

a12=123×1+2=123+2=121=12a_{12}=\frac{1}{2}|-3\times1+2|=\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}
a22=123×2+2=126+2=124=42=2a_{22}=\frac{1}{2}|-3\times2+2|=\frac{1}{2}|-6+2|=\frac{1}{2}|-4|=\frac{4}{2}=2
a32=123×3+2=129+2=127=72a_{32}=\frac{1}{2}|-3\times3+2|=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\frac{7}{2}

a13=123×1+3=123+3=0a_{13}=\frac{1}{2}|-3\times1+3|=\frac{1}{2}|-3+3|=0
a23=123×2+3=126+3=123=32a_{23}=\frac{1}{2}|-3\times2+3|=\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\frac{3}{2}
a33=123×3+3=129+3=126=62=3a_{33}=\frac{1}{2}|-3\times3+3|=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=\frac{6}{2}=3

a14=123×1+4=123+4=121=12a_{14}=\frac{1}{2}|-3\times1+4|=\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2}
a24=123×2+4=126+4=122=22=1a_{24}=\frac{1}{2}|-3\times2+4|=\frac{1}{2}|-6+4|=\frac{1}{2}|-2|=\frac{2}{2}=1
a34=123×3+4=129+4=125=52a_{34}=\frac{1}{2}|-3\times3+4|=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=\frac{5}{2}

Therefore, the required matrix is A=[112012 522321 472352]A=\begin{bmatrix}1& \frac{1}{2}& 0& \frac{1}{2}\\\ \frac{5}{2}& 2& \frac{3}{2} &1 \\\ 4& \frac{7}{2}& 3 &\frac{5}{2}\end{bmatrix}


(ii)aija_{ij}=2i-j i=1,2,3 and j=1,2,3,4
therefore
a11=2×11=21=1a_{11}=2\times1-1=2-1=1
a21=2×21=41=3a_{21}=2\times2-1=4-1=3
a31=2×31=61=5a_{31}=2\times3-1=6-1=5

a12=2×12=22=0a_{12}=2\times1-2=2-2=0
a22=2×22=42=2a_{22}=2\times2-2=4-2=2
a32=2×32=62=4a_{32}=2\times3-2=6-2=4

a13=2×13=23=1a_{13}=2\times1-3=2-3=-1
a23=2×23=43=1a_{23}=2\times2-3=4-3=1
a33=2×33=63=3a_{33}=2\times3-3=6-3=3

a14=2×14=24=2a_{14}=2\times1-4=2-4=-2
a24=2×24=44=0a_{24}=2\times2-4=4-4=0
a34=2×34=64=2a_{34}=2\times3-4=6-4=2
Therefore, the required matrix is A=[1012 3210 5432]A=\begin{bmatrix}1& 0& -1& -2\\\ 3& 2& 1& 0\\\ 5 &4& 3 &2\end{bmatrix}