Question
Mathematics Question on Matrices
Construct a 3×4 matrix, whose elements are given by
I. aij=21∣−3i+j∣
II. aij=2i−j
In general, a 3 × 4 matrix is given by A=a11\[0.3em]a21\[0.3em]a31a12a22a32a13a23a33a14a24a34
(i) aij=∣−3i+j∣,i=1,2,3andj=1,2,3,4
Therefore a11=21∣−3×1+1∣=21∣−3+1∣=21∣−2∣=22=1
a21=21∣−3×2+1∣=21∣−6+1∣=21∣−5∣=25
a31=21∣−3×3+1∣=21∣−9+1∣=21∣−8∣=28=4
a12=21∣−3×1+2∣=21∣−3+2∣=21∣−1∣=21
a22=21∣−3×2+2∣=21∣−6+2∣=21∣−4∣=24=2
a32=21∣−3×3+2∣=21∣−9+2∣=21∣−7∣=27
a13=21∣−3×1+3∣=21∣−3+3∣=0
a23=21∣−3×2+3∣=21∣−6+3∣=21∣−3∣=23
a33=21∣−3×3+3∣=21∣−9+3∣=21∣−6∣=26=3
a14=21∣−3×1+4∣=21∣−3+4∣=21∣1∣=21
a24=21∣−3×2+4∣=21∣−6+4∣=21∣−2∣=22=1
a34=21∣−3×3+4∣=21∣−9+4∣=21∣−5∣=25
Therefore, the required matrix is A=1 25 421227023321125
(ii)aij=2i-j i=1,2,3 and j=1,2,3,4
therefore
a11=2×1−1=2−1=1
a21=2×2−1=4−1=3
a31=2×3−1=6−1=5
a12=2×1−2=2−2=0
a22=2×2−2=4−2=2
a32=2×3−2=6−2=4
a13=2×1−3=2−3=−1
a23=2×2−3=4−3=1
a33=2×3−3=6−3=3
a14=2×1−4=2−4=−2
a24=2×2−4=4−4=0
a34=2×3−4=6−4=2
Therefore, the required matrix is A=1 3 5024−113−202