Solveeit Logo

Question

Question: Construct a \(3 \times 4\) matrix, whose elements are given by \( \left( i \right){a_{ij}} = \...

Construct a 3×43 \times 4 matrix, whose elements are given by
(i)aij=123i+j (ii)aij=2ij  \left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right| \\\ \left( {ii} \right){a_{ij}} = 2i - j \\\

Explanation

Solution

Hint- Assume a 3×43 \times 4 matrix
= \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}} \end{array}} \right]
and find the value of every element by substituting the suitable values of i & j.

(i)aij=123i+j\left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right|, in 3×43 \times 4 matrix, number of rows and column are 3 and 4 respectively.
So, ii is for row and jj is for column, therefore
i=1,2,3 ;j=1,2,3,4i = 1,2,3{\text{ ;}} j = 1,2,3,4
As you know modulus of any negative number is positive for examplesa=a\left| { - a} \right| = a, so, we use this property to evaluate the values of (a11,a12,....................,a34)\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)
a11=123+1=22=22=1 a12=123+2=12=12 a13=123+3=02=02=0 a14=123+4=12=12 a21=123×2+1=52=52 a22=123×2+2=42=42=2 a23=123×2+3=32=32 a24=123×2+4=22=22=1 a31=123×3+1=82=82=4 a32=123×3+2=72=72 a33=123×3+3=62=62=3 a34=123×3+4=52=52  {a_{11}} = \dfrac{1}{2}\left| { - 3 + 1} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\\ {a_{12}} = \dfrac{1}{2}\left| { - 3 + 2} \right| = \dfrac{{\left| { - 1} \right|}}{2} = \dfrac{1}{2} \\\ {a_{13}} = \dfrac{1}{2}\left| { - 3 + 3} \right| = \dfrac{{\left| 0 \right|}}{2} = \dfrac{0}{2} = 0 \\\ {a_{14}} = \dfrac{1}{2}\left| { - 3 + 4} \right| = \dfrac{{\left| 1 \right|}}{2} = \dfrac{1}{2} \\\ {a_{21}} = \dfrac{1}{2}\left| { - 3 \times 2 + 1} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\\ {a_{22}} = \dfrac{1}{2}\left| { - 3 \times 2 + 2} \right| = \dfrac{{\left| { - 4} \right|}}{2} = \dfrac{4}{2} = 2 \\\ {a_{23}} = \dfrac{1}{2}\left| { - 3 \times 2 + 3} \right| = \dfrac{{\left| { - 3} \right|}}{2} = \dfrac{3}{2} \\\ {a_{24}} = \dfrac{1}{2}\left| { - 3 \times 2 + 4} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\\ {a_{31}} = \dfrac{1}{2}\left| { - 3 \times 3 + 1} \right| = \dfrac{{\left| { - 8} \right|}}{2} = \dfrac{8}{2} = 4 \\\ {a_{32}} = \dfrac{1}{2}\left| { - 3 \times 3 + 2} \right| = \dfrac{{\left| { - 7} \right|}}{2} = \dfrac{7}{2} \\\ {a_{33}} = \dfrac{1}{2}\left| { - 3 \times 3 + 3} \right| = \dfrac{{\left| { - 6} \right|}}{2} = \dfrac{6}{2} = 3 \\\ {a_{34}} = \dfrac{1}{2}\left| { - 3 \times 3 + 4} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\\
So, the required 3×43 \times 4 matrix is,
= \left[ {\begin{array}{*{20}{c}} 1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\\ {\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\\ 4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}} \end{array}} \right]

(ii)aij=2ij\left( {ii} \right){a_{ij}} = 2i - j
aij=2ij{a_{ij}} = 2i - j, in 3×43 \times 4 matrix, number of rows and columns are 3 and 4 respectively.
So, ii is for row and jj is for column, therefore
i=1,2,3 ;j=1,2,3,4i = 1,2,3{\text{ ;}}j = 1,2,3,4
Now, evaluate the values of (a11,a12,....................,a34)\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)
a11=2×11=1 a12=2×12=0 a13=2×13=1 a14=2×14=2 a21=2×21=3 a22=2×22=2 a23=2×23=1 a24=2×24=0 a31=2×31=5 a32=2×32=4 a33=2×33=3 a34=2×34=2  {a_{11}} = 2 \times 1 - 1 = 1 \\\ {a_{12}} = 2 \times 1 - 2 = 0 \\\ {a_{13}} = 2 \times 1 - 3 = - 1 \\\ {a_{14}} = 2 \times 1 - 4 = - 2 \\\ {a_{21}} = 2 \times 2 - 1 = 3 \\\ {a_{22}} = 2 \times 2 - 2 = 2 \\\ {a_{23}} = 2 \times 2 - 3 = 1 \\\ {a_{24}} = 2 \times 2 - 4 = 0 \\\ {a_{31}} = 2 \times 3 - 1 = 5 \\\ {a_{32}} = 2 \times 3 - 2 = 4 \\\ {a_{33}} = 2 \times 3 - 3 = 3 \\\ {a_{34}} = 2 \times 3 - 4 = 2 \\\
So, the required 3×43 \times 4 matrix
= \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}&{ - 2} \\\ 3&2&1&0 \\\ 5&4&3&2 \end{array}} \right]
So, these are the required matrices.

Note: In these types of questions always remember that in an m×nm \times n matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.