Question
Question: Construct a \(3 \times 4\) matrix, whose elements are given by \( \left( i \right){a_{ij}} = \...
Construct a 3×4 matrix, whose elements are given by
(i)aij=21∣−3i+j∣ (ii)aij=2i−j
Solution
Hint- Assume a 3×4 matrix
= \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}
\end{array}} \right]
and find the value of every element by substituting the suitable values of i & j.
(i)aij=21∣−3i+j∣, in 3×4 matrix, number of rows and column are 3 and 4 respectively.
So, i is for row and j is for column, therefore
i=1,2,3 ;j=1,2,3,4
As you know modulus of any negative number is positive for examples∣−a∣=a, so, we use this property to evaluate the values of (a11,a12,....................,a34)
a11=21∣−3+1∣=2∣−2∣=22=1 a12=21∣−3+2∣=2∣−1∣=21 a13=21∣−3+3∣=2∣0∣=20=0 a14=21∣−3+4∣=2∣1∣=21 a21=21∣−3×2+1∣=2∣−5∣=25 a22=21∣−3×2+2∣=2∣−4∣=24=2 a23=21∣−3×2+3∣=2∣−3∣=23 a24=21∣−3×2+4∣=2∣−2∣=22=1 a31=21∣−3×3+1∣=2∣−8∣=28=4 a32=21∣−3×3+2∣=2∣−7∣=27 a33=21∣−3×3+3∣=2∣−6∣=26=3 a34=21∣−3×3+4∣=2∣−5∣=25
So, the required 3×4 matrix is,
= \left[ {\begin{array}{*{20}{c}}
1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\\
{\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\\
4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}}
\end{array}} \right]
(ii)aij=2i−j
aij=2i−j, in 3×4 matrix, number of rows and columns are 3 and 4 respectively.
So, i is for row and j is for column, therefore
i=1,2,3 ;j=1,2,3,4
Now, evaluate the values of (a11,a12,....................,a34)
a11=2×1−1=1 a12=2×1−2=0 a13=2×1−3=−1 a14=2×1−4=−2 a21=2×2−1=3 a22=2×2−2=2 a23=2×2−3=1 a24=2×2−4=0 a31=2×3−1=5 a32=2×3−2=4 a33=2×3−3=3 a34=2×3−4=2
So, the required 3×4 matrix
= \left[ {\begin{array}{*{20}{c}}
1&0&{ - 1}&{ - 2} \\\
3&2&1&0 \\\
5&4&3&2
\end{array}} \right]
So, these are the required matrices.
Note: In these types of questions always remember that in an m×n matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.