Question
Question: Considering six sub-interval, the value of \(\int_{0}^{6}\frac{dx}{1 + x^{2}}\) by Simpson's rule is...
Considering six sub-interval, the value of ∫061+x2dx by Simpson's rule is
A
1.3562
B
1.3662
C
1.3456
D
1.2662
Answer
1.3662
Explanation
Solution
h=66−0=1
x0=0,6mu6mux1=0+1.1=1
x2=0+2.1=2,6mu6mux3=3,6mu6mux4=4,6mu6mux5=5,6mu6mux6=6and
}{\frac{1}{26},\mspace{6mu}\mspace{6mu} y_{6} = \frac{1}{37}}$$ By Simpson's rule, $$\int_{a}^{b}{f(x)dx = \frac{h}{3}\left\lbrack (y_{0} + y_{6}) + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) \right\rbrack} = \frac{1}{3}\left\lbrack \left( 1 + \frac{1}{37} \right) + 4\left( \frac{1}{2} + \frac{1}{10} + \frac{1}{26} \right) + 2\left( \frac{1}{5} + \frac{1}{17} \right) \right\rbrack = 1.3662$$