Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Considering only the principal values of inverse trigonometric functions, the number of positive real values of xx satisfying tan1(x)+tan1(2x)=π4\tan^{-1}(x) + \tan^{-1}(2x) = \frac{\pi}{4} is:

A

More than 2

B

1

C

2

D

0

Answer

1

Explanation

Solution

Given: tan1x+tan12x=π4\tan^{-1} x + \tan^{-1} 2x = \frac{\pi}{4}, where x>0x > 0.

    tan12x=π4tan1x\implies \tan^{-1} 2x = \frac{\pi}{4} - \tan^{-1} x

Taking tangent on both sides:

    2x=1x1+x\implies 2x = \frac{1 - x}{1 + x}

    2x(1+x)=1x\implies 2x(1 + x) = 1 - x

    2x2+3x1=0\implies 2x^2 + 3x - 1 = 0

Solving the quadratic equation:

x=3±9+84x = \frac{-3 \pm \sqrt{9 + 8}}{4}

x=3±174x = \frac{-3 \pm \sqrt{17}}{4}

Since x>0x > 0, the only possible solution is:

x=3+174x = \frac{-3 + \sqrt{17}}{4}

Thus, the number of positive real values of xx is 11.

The Correct answer is: 1