Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Considering only the principal values of inverse functions, the set A=x0:tan1(2x)+tan1(3x)=π4A = \\{ x \ge 0 : \tan^{-1} (2x) + \tan^{-1} (3x) = \frac{\pi}{4} \\}

A

is an empty set

B

Contains more than two elements

C

Contains two elements

D

is a singleton

Answer

is a singleton

Explanation

Solution

tan1(2x)+tan1(3x)=π/4\tan^{-1}\left(2x\right)+\tan^{-1}\left(3x\right)=\pi/4
5x16x2=1\Rightarrow \frac{5x}{1-6x^{2}} = 1
6x2+5x1=0\Rightarrow 6x^{2}+5x-1=0
x=1x=-1 or x=16x=\frac{1}{6}
x=16x>0x = \frac{1}{6} \because x >0