Solveeit Logo

Question

Question: Considering only the principal values, if \(\tan \left( \cos ^ { - 1 } x \right) = \sin \left[ \cot...

Considering only the principal values, if

tan(cos1x)=sin[cot1(12)]\tan \left( \cos ^ { - 1 } x \right) = \sin \left[ \cot ^ { - 1 } \left( \frac { 1 } { 2 } \right) \right], then x is equal to

A

15\frac { 1 } { \sqrt { 5 } }

B

25\frac { 2 } { \sqrt { 5 } }

C

35\frac { 3 } { \sqrt { 5 } }

D

53\frac { \sqrt { 5 } } { 3 }

Answer

53\frac { \sqrt { 5 } } { 3 }

Explanation

Solution

Put cot1(12)=θcotθ=12\cot ^ { - 1 } \left( \frac { 1 } { 2 } \right) = \theta \Rightarrow \cot \theta = \frac { 1 } { 2 }

cos1x=ϕ\cos ^ { - 1 } x = \phi then x=cosϕx = \cos \phi

Also tanϕ=25,x=cosϕ=53\tan \phi = \frac { 2 } { \sqrt { 5 } } , \therefore x = \cos \phi = \frac { \sqrt { 5 } } { 3 }