Solveeit Logo

Question

Chemistry Question on Colligative Properties

Considering acetic acid dissociates in water, its dissociation constant is 6.25×1056.25 \times 10^{-5}. If 5 mL of acetic acid is dissolved in 1 litre water, the solution will freeze at x×101-x \times 10^{-1} °C, provided pure water freezes at 0 °C. x=x = _____ (Nearest integer)
Given: (Kf)water=1.86(K_f)_{water} = 1.86 K kg mol1^{-1}
density of acetic acid is 1.2 g mol1^{-1}
molar mass of water = 18 g mol1^{-1}
molar mass of acetic acid = 60 g mol1^{-1}
density of water = 1 g cm3^{-3}
Acetic acid dissociates as CH3_3COOH \rightleftharpoons CH3_3COO^- + H+^+

Answer

The depression in freezing point ΔTf\Delta T_f is calculated using the formula:
ΔTf=iKfm,\Delta T_f = i \cdot K_f \cdot m,
where:
ii is the van ’t Hoff factor,
KfK_f is the cryoscopic constant (1.86K kg mol11.86 \, \text{K kg mol}^{-1}),
mm is the molality of the solution.
Step 1: Calculate the molality of the solution
The mass of acetic acid dissolved is:
Mass of acetic acid=Volume×Density=5mL×1.2g/mL=6g.\text{Mass of acetic acid} = \text{Volume} \times \text{Density} = 5 \, \text{mL} \times 1.2 \, \text{g/mL} = 6 \, \text{g}.
The number of moles of acetic acid is:
Moles of acetic acid=Mass of acetic acidMolar mass of acetic acid=660=0.1mol.\text{Moles of acetic acid} = \frac{\text{Mass of acetic acid}}{\text{Molar mass of acetic acid}} = \frac{6}{60} = 0.1 \, \text{mol}.
The molality of the solution is:
m=Moles of soluteMass of solvent (kg)=0.11=0.1mol/kg.m = \frac{\text{Moles of solute}}{\text{Mass of solvent (kg)}} = \frac{0.1}{1} = 0.1 \, \text{mol/kg}.
Step 2: Calculate the van ’t Hoff factor (ii)
The dissociation constant (KaK_a) of acetic acid is:
Ka=6.25×105.K_a = 6.25 \times 10^{-5}.
The degree of dissociation (α\alpha) is given by:
α=KaC,\alpha = \sqrt{\frac{K_a}{C}},
where CC is the molarity of the solution.
The molarity is:
C=Moles of soluteVolume of solution (L)=0.11=0.1mol/L.C = \frac{\text{Moles of solute}}{\text{Volume of solution (L)}} = \frac{0.1}{1} = 0.1 \, \text{mol/L}.
Substituting the values:
α=6.25×1050.1=6.25×104=0.025.\alpha = \sqrt{\frac{6.25 \times 10^{-5}}{0.1}} = \sqrt{6.25 \times 10^{-4}} = 0.025.
The van ’t Hoff factor is:
i=1+α=1+0.025=1.025.i = 1 + \alpha = 1 + 0.025 = 1.025.
Step 3: Calculate ΔTf\Delta T_f
ΔTf=iKfm=1.0251.860.1=0.19065K.\Delta T_f = i \cdot K_f \cdot m = 1.025 \cdot 1.86 \cdot 0.1 = 0.19065 \, \text{K}.
Converting to x×102-x \times 10^{-2}:
x=19.x = 19.
Final Answer: x=19x = 19.