Solveeit Logo

Question

Question: Consider two sets \(X\)and \(Y\)such that, \(X = \\{ {8^n} - 7n - 1:n \in N\\} \)and \(Y = \\{ 49...

Consider two sets XXand YYsuch that,
X=8n7n1:nNX = \\{ {8^n} - 7n - 1:n \in N\\} and Y=49(n1):nN,Y = \\{ 49(n - 1):n \in N\\} , then choose the correct option:
(A) X=YX = Y (B) XYX \subset Y (C) YXY \subset X (D) None of these

Explanation

Solution

Hint: Use 8n=(1+7)n{8^n} = {(1 + 7)^n} and then apply binomial expansion.
The elements in XX are in the form of 8n7n1{8^n} - 7n - 1. So, this can be written as:
8n7n1=(1+7)n(1+7n){8^n} - 7n - 1 = {(1 + 7)^n} - (1 + 7n)
Using binomial expansion for(1+7)n{(1 + 7)^n}:

8n7n1=nC0+nC1×7+nC2×72+nC3×73+.....+nCn×7n(1+7n) 8n7n1=1+7n+nC2×72+nC3×73+.....+nCn×7n(1+7n) 8n7n1=nC2×72+nC3×73+.....+nCn×7n 8n7n1=72(nC2+nC3×7+.....+nCn×7n2), 8n7n1=49(nC2+nC3×7+.....+nCn×7n2)  \Rightarrow {8^n} - 7n - 1{ = ^n}{C_0}{ + ^n}{C_1} \times 7{ + ^n}{C_2} \times {7^2}{ + ^n}{C_3} \times {7^3} + .....{ + ^n}{C_n} \times {7^n} - (1 + 7n) \\\ \Rightarrow {8^n} - 7n - 1 = 1 + 7n{ + ^n}{C_2} \times {7^2}{ + ^n}{C_3} \times {7^3} + .....{ + ^n}{C_n} \times {7^n} - (1 + 7n) \\\ \Rightarrow {8^n} - 7n - 1{ = ^n}{C_2} \times {7^2}{ + ^n}{C_3} \times {7^3} + .....{ + ^n}{C_n} \times {7^n} \\\ \Rightarrow {8^n} - 7n - 1 = {7^2}{(^n}{C_2}{ + ^n}{C_3} \times 7 + .....{ + ^n}{C_n} \times {7^{n - 2}}), \\\ \Rightarrow {8^n} - 7n - 1 = 49{(^n}{C_2}{ + ^n}{C_3} \times 7 + .....{ + ^n}{C_n} \times {7^{n - 2}}) \\\

Clearly, 8n7n1{8^n} - 7n - 1 will be a multiple of 4949 for different values of n.n.
\therefore Set XX contains some multiple of 4949
Elements of YYon the other hand are represented by 49(n1)49(n - 1)for all natural numbers.
\therefore Set YYcontains all multiples of 4949 including 00
Clearly set XX is a proper subset of set YY
Therefore, XYX \subset Yis the correct relation between the two sets and option (B) is correct.
Note: If two sets AA and BB are such that set BB contains all elements of set AA along with at least one extra element of itself, then AA is said to be the proper subset of BB and is denoted by AB.A \subset B.