Question
Question: Find the value of $arg(\frac{z_1}{z_3})+arg(\frac{z_2}{z_4})$...
Find the value of arg(z3z1)+arg(z4z2)

A
0
B
π
C
2π
D
23π
Answer
0
Explanation
Solution
Let z2=z1 and z4=z3 since (z1,z2) and (z3,z4) are pairs of conjugate complex numbers. The expression to evaluate is arg(z3z1)+arg(z4z2). Using the property arg(A)+arg(B)=arg(A⋅B), we get: arg(z3z1)+arg(z4z2)=arg(z3z1⋅z4z2) Substitute z2=z1 and z4=z3: =arg(z3z1⋅z3z1) =arg(z3⋅z3z1⋅z1) Using the property z⋅z=∣z∣2: =arg(∣z3∣2∣z1∣2) Since z1 and z3 are non-zero complex numbers, ∣z1∣2 and ∣z3∣2 are positive real numbers. Therefore, ∣z3∣2∣z1∣2 is a positive real number. The argument of any positive real number is 0.