Solveeit Logo

Question

Question: Find the value of $arg(\frac{z_1}{z_3})+arg(\frac{z_2}{z_4})$...

Find the value of arg(z1z3)+arg(z2z4)arg(\frac{z_1}{z_3})+arg(\frac{z_2}{z_4})

A

0

B

π\pi

C

π2\frac{\pi}{2}

D

3π2\frac{3\pi}{2}

Answer

0

Explanation

Solution

Let z2=z1z_2 = \overline{z_1} and z4=z3z_4 = \overline{z_3} since (z1,z2)(z_1, z_2) and (z3,z4)(z_3, z_4) are pairs of conjugate complex numbers. The expression to evaluate is arg(z1z3)+arg(z2z4)arg(\frac{z_1}{z_3})+arg(\frac{z_2}{z_4}). Using the property arg(A)+arg(B)=arg(AB)arg(A) + arg(B) = arg(A \cdot B), we get: arg(z1z3)+arg(z2z4)=arg(z1z3z2z4)arg\left(\frac{z_1}{z_3}\right) + arg\left(\frac{z_2}{z_4}\right) = arg\left(\frac{z_1}{z_3} \cdot \frac{z_2}{z_4}\right) Substitute z2=z1z_2 = \overline{z_1} and z4=z3z_4 = \overline{z_3}: =arg(z1z3z1z3)= arg\left(\frac{z_1}{z_3} \cdot \frac{\overline{z_1}}{\overline{z_3}}\right) =arg(z1z1z3z3)= arg\left(\frac{z_1 \cdot \overline{z_1}}{z_3 \cdot \overline{z_3}}\right) Using the property zz=z2z \cdot \overline{z} = |z|^2: =arg(z12z32)= arg\left(\frac{|z_1|^2}{|z_3|^2}\right) Since z1z_1 and z3z_3 are non-zero complex numbers, z12|z_1|^2 and z32|z_3|^2 are positive real numbers. Therefore, z12z32\frac{|z_1|^2}{|z_3|^2} is a positive real number. The argument of any positive real number is 0.