Question
Mathematics Question on Geometric Progression
Consider two G.Ps. 2,22,23,…. and 4,42,43,… of 60 and n terms respectively. If the geometric mean of all the 60+n terms is (2)8225 then ∑k=1nk(n−k) is equal to
A
560
B
1540
C
1330
D
2600
Answer
1330
Explanation
Solution
Given G.P′s 2,22,23,.…60 terms
4,42,…n terms
Now, GM = 28225
(2.22⋯4.42⋯)60+n1=28225
(260+nn2+n+1830)=28225
60+nn2+n+1830=8225
⇒8n2–217n+1140=0
n=857,20
So, n=20
∴\sum_{k=1}^{n}k(n−k)$$=20×\frac {20×21}{2}−\frac {20×21×41}{6}
=220×21[20−341]
=1330
So, the correct option is (C): 1330