Solveeit Logo

Question

Mathematics Question on Geometric Progression

Consider two G.Ps. 2,22,23,.2, 2^2, 2^3, …. and 4,42,43,4, 4^2, 4^3, … of 6060 and n terms respectively. If the geometric mean of all the 60+n60 + n terms is (2)2258(2)^{\frac {225}{8}} then k=1nk(nk)\sum_{k=1}^{n}k(n−k) is equal to

A

560

B

1540

C

1330

D

2600

Answer

1330

Explanation

Solution

Given G.P′s 2,22,23,.602, 2^2, 2^3, .… 60 terms
4,42,n4, 4^2, … n terms
Now, GM = 222582^{\frac {225}{8}}

(2.224.42)160+n=22258(2.2^2⋯4.4^2⋯)^{\frac {1}{60+n}}=2^{\frac {225}{8}}

(2n2+n+183060+n)=22258(2^{\frac {n^2+n+1830}{60+n})}=2^{\frac {225}{8}}

n2+n+183060+n=2258{\frac {n^2+n+1830}{60+n}}={\frac {225}{8}}

8n2217n+1140=0⇒8n^2–217n+1140=0
n=578,20n=\frac {57}{8}, 20
So, n=20n=20
\sum_{k=1}^{n}k(n−k)$$=20×\frac {20×21}{2}−\frac {20×21×41}{6}

=20×212[20413]=\frac {20×21}{2}[20−\frac {41}{3}]
=1330=1330

So, the correct option is (C): 13301330