Solveeit Logo

Question

Question: Consider two fixed points $A(1, 0, 0)$ and $P(1, 0, 1)$. If $OA$ (where '$O$' is origin) is rotated ...

Consider two fixed points A(1,0,0)A(1, 0, 0) and P(1,0,1)P(1, 0, 1). If OAOA (where 'OO' is origin) is rotated through 'OO' in xyxy-plane by a variable angle θ\theta, to reach a new position OBOB, then which of the following statement(s) is (are) correct?

A

Maximum volume of tetrahedron OAPBOAPB is 16\frac{1}{6}

B

Maximum volume of tetrahedron OAPBOAPB is unity

C

The distance of plane OPBOPB from point AA is sinθ(1+sin2θ)\frac{|\sin\theta|}{\sqrt{(1+\sin^2\theta)}}

D

Equation of the plane OPBOPB is (x)sinθ+ycosθ=0(-x)\sin\theta + y\cos\theta = 0

Answer

Options 1 and 3 are correct.

Explanation

Solution

1. Coordinates:

  • O=(0,0,0)O = (0,0,0)
  • A=(1,0,0)A = (1,0,0)
  • P=(1,0,1)P = (1,0,1)
  • BB is the image of AA rotated in the xyxy–plane by θ\theta: B=(cosθ,sinθ,0)B=(\cos\theta,\sin\theta,0)

2. Volume of Tetrahedron OAPBOAPB:

The volume is given by:

V=16det(11cosθ00sinθ010)V=\frac{1}{6}\left| \det\begin{pmatrix} 1 & 1 & \cos\theta\\[1mm] 0 & 0 & \sin\theta\\[1mm] 0 & 1 & 0 \end{pmatrix}\right|

Calculating the determinant:

det=1(00sinθ1)1(00sinθ0)+cosθ(0100)=sinθ.\det = 1\bigl(0\cdot0-\sin\theta\cdot1\bigr) - 1\bigl(0\cdot0-\sin\theta\cdot0\bigr) + \cos\theta\bigl(0\cdot1-0\cdot0\bigr) = -\sin\theta.

Thus,

V=16sinθ.V = \frac{1}{6}|\sin\theta|.

The maximum occurs when sinθ=1|\sin\theta|=1, so maximum V=16V=\frac{1}{6}.

3. Distance of Point AA from Plane OPBOPB:

Find the plane containing OO, PP and BB.

  • Vectors in the plane: OP=(1,0,1),OB=(cosθ,sinθ,0)\vec{OP}=(1,0,1), \quad \vec{OB}=(\cos\theta,\sin\theta,0)
  • Normal vector n=OP×OB \vec{n}=\vec{OP}\times\vec{OB}: n=ijk101cosθsinθ0=(sinθ,cosθ,sinθ).\vec{n}= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\[2mm] 1 & 0 & 1\\[2mm] \cos\theta & \sin\theta & 0 \end{vmatrix} =\bigl(-\sin\theta,\cos\theta,\sin\theta\bigr).
  • Equation of the plane (through OO) is: sinθx+cosθy+sinθz=0.-\sin\theta\,x +\cos\theta\,y+\sin\theta\,z=0.
  • Distance from A=(1,0,0)A=(1,0,0) to the plane is: d=nAn=sinθ1+cosθ0+sinθ0(sinθ)2+(cosθ)2+(sinθ)2=sinθ1+sin2θ.d=\frac{| \vec{n}\cdot A |}{\|\vec{n}\|} =\frac{|- \sin\theta\cdot1 + \cos\theta\cdot0+\sin\theta\cdot0|}{\sqrt{(\sin\theta)^2+(\cos\theta)^2+(\sin\theta)^2}} =\frac{|\sin\theta|}{\sqrt{1+ \sin^2\theta}}.

4. Verification of Statements:

  • Statement 1: "Maximum volume of tetrahedron OAPBOAPB is 16\frac{1}{6}".
    \checkmark True.
  • Statement 2: "Maximum volume of tetrahedron OAPBOAPB is unity".
    False.
  • Statement 3: "The distance of plane OPBOPB from point AA is sinθ(1+sin2θ)\frac{|\sin\theta|}{\sqrt{(1+\sin^2\theta)}}".
    \checkmark True.
  • Statement 4: "Equation of the plane OPBOPB is (x)sinθ+ycosθ=0(-x)\sin\theta + y\cos\theta = 0".
    The correct equation (from above) is sinθx+cosθy+sinθz=0.-\sin\theta\,x+\cos\theta\,y+\sin\theta\,z=0. Lacking the zz-term, this statement is False.