Solveeit Logo

Question

Question: Consider two containers A and B containing identical gases at the same pressure, volume and temperat...

Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original volume isothermally while the gas in container B is compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is

A

2γ\gamma–1

B

(12)γ1\left( \frac { 1 } { 2 } \right) ^ { \gamma - 1 }

C

(11γ)2\left( \frac { 1 } { 1 - \gamma } \right) ^ { 2 }

D

(1γ1)2\left( \frac { 1 } { \gamma - 1 } \right) ^ { 2 }

Answer

2γ\gamma–1

Explanation

Solution

The gas in container A is compressed isothermally, P1 V1=P2 V2\therefore \mathrm { P } _ { 1 } \mathrm {~V} _ { 1 } = \mathrm { P } _ { 2 } \mathrm {~V} _ { 2 }

or P2=P1 V1 V2=P1V1 V1/2=2P1(V2=V1/2)\mathrm { P } _ { 2 } = \frac { \mathrm { P } _ { 1 } \mathrm {~V} _ { 1 } } { \mathrm {~V} _ { 2 } } = \mathrm { P } _ { 1 } \frac { \mathrm { V } _ { 1 } } { \mathrm {~V} _ { 1 } / 2 } = 2 \mathrm { P } _ { 1 } \quad \left( \because \mathrm { V } _ { 2 } = \mathrm { V } _ { 1 } / 2 \right)

again the gas in container B is compressed adiabatically,

P1 V1γP2(V2)γ\therefore \mathrm { P } _ { 1 } \mathrm {~V} _ { 1 } ^ { \gamma } \mathrm { P } _ { 2 } ^ { \prime } \left( \mathrm { V } _ { 2 } ^ { \prime } \right) ^ { \gamma }

Hence P2P2=2γP12P1=2γ1\frac { \mathrm { P } _ { 2 } ^ { \prime } } { \mathrm { P } _ { 2 } } = \frac { 2 ^ { \gamma } \mathrm { P } _ { 1 } } { 2 \mathrm { P } _ { 1 } } = 2 ^ { \gamma - 1 }