Solveeit Logo

Question

Question: Consider triangle ABC, right angled at C in which AB = 29 units, BC = 21 units and \(\angle ABC=\the...

Consider triangle ABC, right angled at C in which AB = 29 units, BC = 21 units and ABC=θ\angle ABC=\theta (see fig.) Determine the value of cos2θ+sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta .

Explanation

Solution

In this question, we are given a right angled triangle along with measurements of base and hypotenuse of the triangle. We need to find the value of cos2θ+sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta . For this, we will first find the value of the perpendicular of the right angled triangle, using Pythagoras theorem. Pythagora's theorem states that, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. After that, we will find the value of cosθ and sinθ\cos \theta \text{ and }\sin \theta and use them to find the value of cos2θ+sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta .
We will use cosθ=Side adjacent to angle θHypotenuse=BaseHypotenuse\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}} and
sinθ=Side opposite to angle θHypotenuse=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}.

Complete step-by-step answer:
Here we are given ΔABC\Delta ABC with AB = 29 and BC = 21. Since, ΔABC=θ\Delta ABC=\theta so according to the diagram, base = 21 and hypotenuse = 29.

Now, let us first find the value of AC using Pythagoras theorem.
According to the Pythagoras theorem, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. Hence,
(Hypotenuse)2=(Perpendicular)2+(Base)2{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}
According to the diagram,

& {{\left( \text{AB} \right)}^{2}}={{\left( \text{AC} \right)}^{2}}+{{\left( \text{BC} \right)}^{2}} \\\ & \Rightarrow A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\\ \end{aligned}$$ Putting values of AB and BC we get: $$\Rightarrow A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$$ Let us find values of ${{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$ using the property that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Hence, we get: $$\begin{aligned} & \Rightarrow A{{C}^{2}}=\left( 29+21 \right)\left( 29-21 \right) \\\ & \Rightarrow A{{C}^{2}}=\left( 50 \right)\left( 8 \right) \\\ & \Rightarrow A{{C}^{2}}=400 \\\ \end{aligned}$$ Taking square root both sides, we get: $$\Rightarrow AC=\sqrt{400}$$ Now, we know that, $20\times 20=400$ we get: $$\Rightarrow AC=\sqrt{20\times 20}=20$$ So we get perpendicular = 20. Now, let us find the value of $\cos \theta \text{ and }\sin \theta $. As we know, $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$. Hence, $\cos \theta =\dfrac{21}{\text{29}}$. As we know, $\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Hence, $\sin \theta =\dfrac{20}{\text{29}}$. Now we need to find out the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $. So putting values of $\cos \theta \text{ and }\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ we get: $$\begin{aligned} & \Rightarrow {{\left( \dfrac{21}{29} \right)}^{2}}+{{\left( \dfrac{20}{29} \right)}^{2}} \\\ & \Rightarrow \dfrac{{{\left( 21 \right)}^{2}}+{{\left( 20 \right)}^{2}}}{{{\left( 29 \right)}^{2}}} \\\ & \Rightarrow \dfrac{441+400}{841} \\\ & \Rightarrow \dfrac{841}{841} \\\ & \Rightarrow 1 \\\ \end{aligned}$$ Hence the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is 1. **Note:** Students should take care while finding the value of perpendicular. Students can get confused between base and perpendicular while applying to the formula of $\cos \theta \text{ and }\sin \theta $. They can check their answer knowing that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is always 1 because $\cos \theta =\dfrac{B}{H}\text{ and }\sin \theta =\dfrac{P}{H}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta ={{\left( \dfrac{B}{H} \right)}^{2}}+{{\left( \dfrac{P}{H} \right)}^{2}}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{B}^{2}}+{{P}^{2}}}{{{H}^{2}}}$. By Pythagoras theorem, ${{B}^{2}}+{{P}^{2}}={{H}^{2}}$ so ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{H}^{2}}}{{{H}^{2}}}=1$. Here, B is base, P is perpendicular and H is hypotenuse.