Solveeit Logo

Question

Mathematics Question on Vector Algebra

Consider three vectors a,b,c\vec{a}, \vec{b}, \vec{c}. Let a=2,b=3|\vec{a}| = 2, |\vec{b}| = 3 and a=b×c\vec{a} = \vec{b} \times \vec{c}. If α[0,π3]\alpha \in [0, \frac{\pi}{3}] is the angle between the vectors b\vec{b} and c\vec{c}, then the minimum value of 27ca227|\vec{c}| - |\vec{a}|^2 is equal to:

A

110

B

105

C

124

D

121

Answer

124

Explanation

Solution

Given:

a=2,b=3,a=b×c,and α is the angle between b and c.|\vec{a}| = 2, \, |\vec{b}| = 3, \, \vec{a} = \vec{b} \times \vec{c}, \, \text{and } \alpha \text{ is the angle between } \vec{b} \text{ and } \vec{c}.

From the cross product property:

a=bcsinα,|\vec{a}| = |\vec{b}||\vec{c}| \sin \alpha,

we have:

2=3csinα    c=23sinα.2 = 3 \cdot |\vec{c}| \cdot \sin \alpha \implies |\vec{c}| = \frac{2}{3 \sin \alpha}.

Next, we calculate ca2|\vec{c} - \vec{a}|^2:

ca2=c2+a22(ca).|\vec{c} - \vec{a}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2 (\vec{c} \cdot \vec{a}).

Using c=23sinα|\vec{c}| = \frac{2}{3 \sin \alpha} and a=2|\vec{a}| = 2, we find:

c2=(23sinα)2=49sin2α,a2=4.|\vec{c}|^2 = \left(\frac{2}{3 \sin \alpha}\right)^2 = \frac{4}{9 \sin^2 \alpha}, \quad |\vec{a}|^2 = 4.

For ca\vec{c} \cdot \vec{a}, since ab\vec{a} \perp \vec{b} (as a=b×c\vec{a} = \vec{b} \times \vec{c}), we have:

ca=0.\vec{c} \cdot \vec{a} = 0.

Thus:

ca2=49sin2α+4.|\vec{c} - \vec{a}|^2 = \frac{4}{9 \sin^2 \alpha} + 4.

The expression to minimize is:

27ca2=27(49sin2α+4).27|\vec{c} - \vec{a}|^2 = 27 \left(\frac{4}{9 \sin^2 \alpha} + 4 \right).

Simplify:

27ca2=12csc2α+108.27|\vec{c} - \vec{a}|^2 = 12 \csc^2 \alpha + 108.

To minimize, note that csc2α\csc^2 \alpha is minimized when sinα\sin \alpha is maximized. The maximum value of sinα\sin \alpha in the interval α[0,π3]\alpha \in \left[0, \frac{\pi}{3}\right] is sinα=sinπ3=32\sin \alpha = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}:

csc2α=1sin2α=1(32)2=43.\csc^2 \alpha = \frac{1}{\sin^2 \alpha} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} = \frac{4}{3}.

Substitute:

27ca2=1243+108=16+108=124.27|\vec{c} - \vec{a}|^2 = 12 \cdot \frac{4}{3} + 108 = 16 + 108 = 124.

Therefore, the minimum value of 27ca227|\vec{c} - \vec{a}|^2 is 124.