Question
Mathematics Question on Vector Algebra
Consider three vectors a,b,c. Let ∣a∣=2,∣b∣=3 and a=b×c. If α∈[0,3π] is the angle between the vectors b and c, then the minimum value of 27∣c∣−∣a∣2 is equal to:
110
105
124
121
124
Solution
Given:
∣a∣=2,∣b∣=3,a=b×c,and α is the angle between b and c.
From the cross product property:
∣a∣=∣b∣∣c∣sinα,
we have:
2=3⋅∣c∣⋅sinα⟹∣c∣=3sinα2.
Next, we calculate ∣c−a∣2:
∣c−a∣2=∣c∣2+∣a∣2−2(c⋅a).
Using ∣c∣=3sinα2 and ∣a∣=2, we find:
∣c∣2=(3sinα2)2=9sin2α4,∣a∣2=4.
For c⋅a, since a⊥b (as a=b×c), we have:
c⋅a=0.
Thus:
∣c−a∣2=9sin2α4+4.
The expression to minimize is:
27∣c−a∣2=27(9sin2α4+4).
Simplify:
27∣c−a∣2=12csc2α+108.
To minimize, note that csc2α is minimized when sinα is maximized. The maximum value of sinα in the interval α∈[0,3π] is sinα=sin3π=23:
csc2α=sin2α1=(23)21=34.
Substitute:
27∣c−a∣2=12⋅34+108=16+108=124.
Therefore, the minimum value of 27∣c−a∣2 is 124.