Solveeit Logo

Question

Mathematics Question on Linear Equations

Consider the system of linear equations
x + y + z = 5,
x + 2y + λ2z = 9,
x + 3y + λz = μ,
where λ, μ ∈ ℝ.Then, which of the following statement is NOT correct?

A

System has infinite number of solutions if λ = 1 and μ = 13

B

System is inconsistent if λ = 1 and μ ≠ 13

C

System is consistent if λ ≠ 1 and μ = 13

D

System has a unique solution if λ ≠ 1 and μ ≠ 13

Answer

System has a unique solution if λ ≠ 1 and μ ≠ 13

Explanation

Solution

Convert the system to matrix form and perform row reduction:

(1115 1229 13λμ)(1115 0114 02λ1μ5)(1115 0114 00λ3μ13)\left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\\ 1 & 2 & 2 & 9 \\\ 1 & 3 & \lambda & \mu \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\\ 0 & 1 & 1 & 4 \\\ 0 & 2 & \lambda - 1 & \mu - 5 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\\ 0 & 1 & 1 & 4 \\\ 0 & 0 & \lambda - 3 & \mu - 13 \end{array}\right)

For consistency: Unique solution if λ3\lambda \neq 3.

Infinite solutions if λ=3\lambda = 3 and μ=13\mu = 13.

No solution if λ=3\lambda = 3 and μ13\mu \neq 13.

Therefore, the incorrect statement is:

(4) System has unique solution if λ=1\lambda = 1 and μ13\mu \neq 13.