Solveeit Logo

Question

Mathematics Question on Linear Algebra

Consider the system of linear equations x+y+z=4μx + y + z = 4\mu, x+2y+2λz=10μx + 2y + 2\lambda z = 10\mu, x+3y+4λ2z=μ2+15x + 3y + 4\lambda^2 z = \mu^2 + 15, where λ,μR\lambda, \mu \in \mathbb{R}. Which one of the following statements is NOT correct?

A

The system has a unique solution if λ12\lambda \neq \frac{1}{2} and μ1,15\mu \neq 1, 15.

B

The system has an infinite number of solutions if λ=12\lambda = \frac{1}{2} and μ=15\mu = 15.

C

The system is inconsistent if λ=12\lambda = \frac{1}{2} and μ1\mu \neq 1.

D

The system is consistent if λ12\lambda \neq \frac{1}{2}.

Answer

The system is inconsistent if λ=12\lambda = \frac{1}{2} and μ1\mu \neq 1.

Explanation

Solution

Write the system of equations in matrix form:

[111 122 134λ][x y z]=[4μ 10μ μ2+15]\begin{bmatrix} 1 & 1 & 1 \\\ 1 & 2 & 2 \\\ 1 & 3 & 4\lambda \end{bmatrix} \begin{bmatrix} x \\\ y \\\ z \end{bmatrix} = \begin{bmatrix} 4\mu \\\ 10\mu \\\ \mu^2 + 15 \end{bmatrix}

Let the coefficient matrix be AA:

A=[111 122 134λ]A = \begin{bmatrix} 1 & 1 & 1 \\\ 1 & 2 & 2 \\\ 1 & 3 & 4\lambda \end{bmatrix}

Calculate the determinant of AA:

det(A)=111 122 134λ=(2λ1)2\text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\\ 1 & 2 & 2 \\\ 1 & 3 & 4\lambda \end{vmatrix} = (2\lambda - 1)^2

For unique solutions, det(A)0\text{det}(A) \neq 0 or λ12\lambda \neq \frac{1}{2}.

For infinite solutions, λ=12\lambda = \frac{1}{2}, and consistency depends on the rank of the augmented matrix with specific values of μ\mu.

The system is inconsistent if λ=12\lambda = \frac{1}{2} and μ1\mu \neq 1