Solveeit Logo

Question

Mathematics Question on Determinants

Consider the system of linear equations a1x+b1y+c1z+d1=0,a_{1}x + b_{1}y +c_{1}z + d_{1} = 0, a2x+b2y+c2z+d2=0, a_{2}x + b_{2}y +c_{2}z + d_{2} = 0, a3x+b3y+c3z+d3=0a_{3}x + b_{3}y +c_{3}z + d_{3} = 0, Let us denote by Δ(a,b,c)\Delta\left(a,b,c\right) the determinant a1b1c1 a2b2c2 a3b3c3,\begin{vmatrix}a_{1}&b_{1}&c_{1}\\\ a_{2}&b_{2}&c_{2}\\\ a_{3}&b_{3}&c_{3}\end{vmatrix}, if Δ(a,b,c)\Delta\left(a,b,c\right) # 00, then the value of x in the unique solution of the above equations is

A

Δ(b,c,d)Δ(a,b,c)\frac{\Delta\left(b, c, d\right)}{\Delta\left(a, b, c\right)}

B

Δ(b,c,d)Δ(a,b,c)\frac{-\Delta\left(b, c, d\right)}{\Delta\left(a, b, c\right)}

C

Δ(a,c,d)Δ(a,b,c)\frac{\Delta\left(a, c, d\right)}{\Delta\left(a, b, c\right)}

D

Δ(b,c,d)Δ(a,b,c)-\frac{\Delta\left(b, c, d\right)}{\Delta\left(a, b, c\right)}

Answer

Δ(b,c,d)Δ(a,b,c)\frac{\Delta\left(b, c, d\right)}{\Delta\left(a, b, c\right)}

Explanation

Solution

From the given system of equations, x=D1D,y=D2D,z=D3Dx = \frac{D_{1}}{D}, y = \frac{D_{2}}{D}, z = \frac{D_{3}}{D} where, D=Δ(a,b,c)D = \Delta \left(a, b, c\right) D1=Δ(d,b,c)D_{1} = \Delta \left(d, b, c\right) D2=Δ(a,d,c)D_{2} = \Delta \left(a, d, c\right) D1=Δ(a,b,d)D_{1} = \Delta \left(a, b, d\right) Now, x=Δ(d,b,c)Δ(a,b,c)x = \frac{\Delta\left(d, b, c\right)}{\Delta\left(a, b, c\right)} where, Δ(d,b,c)=d1b1c1 d2b2c2 d3b3c3\Delta \left(d, b, c\right) = \begin{vmatrix}-d_{1}&b_{1}&c_{1}\\\ -d_{2}&b_{2}&c_{2}\\\ -d_{3}&b_{3}&c_{3}\end{vmatrix} =b1d1c1 b2d2c2 b3d3c3=+b1c1d1 b2c2d2 b3c3d3= -\begin{vmatrix}b_{1}&-d_{1}&c_{1}\\\ b_{2}&-d_{2}&c_{2}\\\ b_{3}&-d_{3}&c_{3}\end{vmatrix} = +\begin{vmatrix}b_{1}&c_{1}&-d_{1}\\\ b_{2}&c_{2}&-d_{2}\\\ b_{3}&c_{3}&-d_{3}\end{vmatrix} =Δ(b,c,d)= \Delta \left(b, c, d\right) Hence, x=Δ(b,c,d)Δ(a,b,c)x = \frac{\Delta \left(b, c, d\right)}{\Delta \left(a, b, c\right)}