Question
Mathematics Question on Determinants
Consider the system of linear equations a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0, Let us denote by Δ(a,b,c) the determinant a1 a2 a3b1b2b3c1c2c3, if Δ(a,b,c) # 0, then the value of x in the unique solution of the above equations is
A
Δ(a,b,c)Δ(b,c,d)
B
Δ(a,b,c)−Δ(b,c,d)
C
Δ(a,b,c)Δ(a,c,d)
D
−Δ(a,b,c)Δ(b,c,d)
Answer
Δ(a,b,c)Δ(b,c,d)
Explanation
Solution
From the given system of equations, x=DD1,y=DD2,z=DD3 where, D=Δ(a,b,c) D1=Δ(d,b,c) D2=Δ(a,d,c) D1=Δ(a,b,d) Now, x=Δ(a,b,c)Δ(d,b,c) where, Δ(d,b,c)=−d1 −d2 −d3b1b2b3c1c2c3 =−b1 b2 b3−d1−d2−d3c1c2c3=+b1 b2 b3c1c2c3−d1−d2−d3 =Δ(b,c,d) Hence, x=Δ(a,b,c)Δ(b,c,d)