Question
Question: Consider the system of linear equation in x, y and z (sin 3q)x – y + z = 0 (cos 2q)x + 4y + 3z = 0...
Consider the system of linear equation in x, y and z
(sin 3q)x – y + z = 0
(cos 2q)x + 4y + 3z = 0
2x + 7y + 7z = 0
if the system has non trivial solution, then qĪ[0, p] are
A
0, p, 6π
B
0, 6π, 65π
C
0, p, 6π, 65π
D
None of these
Answer
0, p, 6π, 65π
Explanation
Solution
The system has a non trivial solution if
D = sin3θcos2θ2−147137 = 0
Ž 7 sin 3q + 7 cos 2q – 6 + 7 cos 2q – 8 = 0
Ž sin 3q + 2 cos 2q = 2 Ž 3 sinq – 4 sin3q + 2 – 2 sin2q = 2 Ž sinq (4 sin2q + 2 sinq – 3) = 0
Ž sinq (2 sinq + 3) (2 sinq – 1) = 0
Ž sin q = 0, 21 since sinq ¹ –23
\ Int [0, p] q = 0, p, 6π, 65π