Solveeit Logo

Question

Question: Consider the system of equations $2x + P^2y + 6z = 8, x + 2y + 2qz = 5$ and $x + y + 3z = 4$...

Consider the system of equations 2x+P2y+6z=8,x+2y+2qz=52x + P^2y + 6z = 8, x + 2y + 2qz = 5 and x+y+3z=4x + y + 3z = 4

A

Given system has unique solution for P±2P \neq \pm \sqrt{2} and q=32q = \frac{3}{2}

B

Given system has no solution for P=±2P = \pm \sqrt{2} and q=32q = \frac{3}{2}

C

Given system has infinite solution for P=±2P = \pm \sqrt{2} and qRq \in R

D

None of these

Answer

Given system has infinite solution for P=±2P = \pm \sqrt{2} and qRq \in \mathbb{R}

Explanation

Solution

For P=±2P=\pm\sqrt{2}, equation (1) becomes identical to equation (3), reducing the system to 2 equations in 3 unknowns which always have infinitely many solutions regardless of qq.

Step 1: Write the coefficient matrix

A=(2P26122q113).A=\begin{pmatrix} 2 & P^2 & 6 \\ 1 & 2 & 2q \\ 1 & 1 & 3 \end{pmatrix}.

The determinant is

det(A)=222q13P212q13+61211.\det(A)=2\begin{vmatrix}2&2q\\1&3\end{vmatrix}-P^2\begin{vmatrix}1&2q\\1&3\end{vmatrix}+6\begin{vmatrix}1&2\\1&1\end{vmatrix}.

Calculate the 2×2 determinants:

det(22q13)=2312q=62q,det(12q13)=1312q=32q,det(1211)=1112=1.\begin{aligned} \det\begin{pmatrix}2&2q\\1&3\end{pmatrix}&=2\cdot3-1\cdot2q=6-2q,\\[1mm] \det\begin{pmatrix}1&2q\\1&3\end{pmatrix}&=1\cdot3-1\cdot2q=3-2q,\\[1mm] \det\begin{pmatrix}1&2\\1&1\end{pmatrix}&=1\cdot1-1\cdot2= -1. \end{aligned}

Thus,

det(A)=2(62q)P2(32q)+6(1)=124qP2(32q)6,\det(A)=2(6-2q)-P^2(3-2q)+6(-1)=12-4q- P^2(3-2q)-6, det(A)=64qP2(32q).\det(A)=6-4q- P^2(3-2q).

Rewriting,

det(A)=63P2+(2P24)q.\det(A)=6-3P^2+(2P^2-4)q.

Notice that if P22P^2\neq2 (i.e. P±2P\neq\pm\sqrt{2}), then

det(A)=0if(2P24)q=3P26.\det(A)=0 \quad\text{if}\quad (2P^2-4)q=3P^2-6.

Since

3P26=3(P22)and2P24=2(P22),3P^2-6=3(P^2-2) \quad \text{and} \quad 2P^2-4=2(P^2-2),

we get

q=3(P22)2(P22)=32.q=\frac{3(P^2-2)}{2(P^2-2)}=\frac{3}{2}.

Thus, for P22P^2\neq2, the determinant is zero when q=32q=\frac{3}{2} and nonzero when q32q\neq\frac{3}{2}. Hence, a unique solution exists for P±2P\neq \pm\sqrt{2} and q32q\neq\frac{3}{2}.

Step 2: Consider the case P2=2P^2=2 (i.e. P=±2P=\pm\sqrt{2}).

For P=±2P=\pm\sqrt{2}, equation (1) becomes

2x+2y+6z=8x+y+3z=4,2x+2y+6z=8 \quad\Longrightarrow \quad x+y+3z=4,

which is exactly the same as equation (3). Thus, the system reduces to

x+y+3z=4,x+2y+2qz=5.\begin{aligned} x+y+3z&=4,\\[1mm] x+2y+2qz&=5. \end{aligned}

This is a system of 2 equations with 3 unknowns. They are consistent (subtracting, we get y+(2q3)z=1y+(2q-3)z=1 which always has a solution with a free parameter), so the system has infinitely many solutions for any qq.