Solveeit Logo

Question

Question: Consider the statements Statement1: If \(x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right...

Consider the statements
Statement1: If xcosθ=ycos(120+θ)=zcos(240+θ)x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right), then xy+yz+zx=0xy+yz+zx=0
Statement2: Value of cosα+cos(120+α)+cos(120α)=0\cos \alpha +\cos \left( {{120}^{\circ }}+\alpha \right)+\cos \left( {{120}^{\circ }}-\alpha \right)=0
Then which of the above statements is correct?
A. Only 1
B. Only 2
C. Both 1 and 2
D. Neither 1 nor 2

Explanation

Solution

To solve this problem, we should know the formulae related to cos(A+B)\cos \left( A+B \right) and cos(AB)\cos \left( A-B \right). The formulae are given as
cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B
cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B
Using these two formulae, we can find if the statement-2 is correct or not. For the statement-1 we should write xcosθ=ycos(120+θ)=zcos(240+θ)=kx\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k and
x=kcosθ,y=kcos(120+θ),z=kcos(240+θ)x=\dfrac{k}{\cos \theta },y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)},z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}. By considering xy+yz+zxxy+yz+zx and taking the L.C.M, we get the numerator similar to the statement-2 in which we can use the above formulae to get the answer.

Complete step-by-step answer:
Let us consider the statement-2
cosα+cos(120+α)+cos(120α)\cos \alpha +\cos \left( {{120}^{\circ }}+\alpha \right)+\cos \left( {{120}^{\circ }}-\alpha \right)
We know the formulae
cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B
cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B
Using them in the equation, where A=120A={{120}^{\circ }} and B=αB=\alpha , we get
cosα+cos120cosαsin120sinα+cos120cosα+sin120sinα =cosα+2cos120cosα \begin{aligned} & \cos \alpha +\cos {{120}^{\circ }}\cos \alpha -\sin {{120}^{\circ }}\sin \alpha +\cos {{120}^{\circ }}\cos \alpha +\sin {{120}^{\circ }}\sin \alpha \\\ & =\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha \\\ \end{aligned}
We know that cos120=cos(90+30)=sin30=12\cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2}
By substituting the value in above equation, we get
cosα+2cos120cosα=cosα2×12cosα=cosαcosα=0\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha =\cos \alpha -2\times \dfrac{1}{2}\cos \alpha =\cos \alpha -\cos \alpha =0
Hence, we can write that statement-2 is correct.
Let us consider statement-1.
xcosθ=ycos(120+θ)=zcos(240+θ)x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right).
Let us consider a value k which is equal to the whole equation.
xcosθ=ycos(120+θ)=zcos(240+θ)=kx\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k
We can write the individual terms of x, y, z as
x=kcosθ, y=kcos(120+θ) z=kcos(240+θ) \begin{aligned} & x=\dfrac{k}{\cos \theta }, \\\ & y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)} \\\ & z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)} \\\ \end{aligned}
Let us consider the term xy+yz+zxxy+yz+zx. From the above relations, we can write that
kcosθ×kcos(120+θ)+kcos(120+θ)×kcos(240+θ)+kcos(240+θ)×kcosθ  \begin{aligned} & \dfrac{k}{\cos \theta }\times \dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \theta } \\\ & \\\ \end{aligned}
We can take k2{{k}^{2}} common and L.C.M of the whole term.
k2(1cosθcos(120+θ)+1cos(120+θ)cos(240+θ)+1cos(240+θ)cosθ) =k2(cosθ+cos(120+θ)cos(240+θ)cosθcos(120+θ)cos(240+θ))  \begin{aligned} & {{k}^{2}}\left( \dfrac{1}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{240}^{\circ }}+\theta \right)\cos \theta } \right) \\\ & ={{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right) \\\ & \\\ \end{aligned}
Let us consider cosθ+cos(120+θ)cos(240+θ)\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)
Applying the cosine formulae, we get
cosθ+cos120cosθsin120sinθ+cos240cosθsin240sinθ\cos \theta +\cos {{120}^{\circ }}\cos \theta -\sin {{120}^{\circ }}\sin \theta +\cos {{240}^{\circ }}\cos \theta -\sin {{240}^{\circ }}\sin \theta
We know the values
cos120=cos(90+30)=sin30=12 sin120=sin(90+30)=cos30=32 cos240=cos(180+60)=cos60=12 sin240=sin(180+60)=sin60=32 \begin{aligned} & \cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2} \\\ & \sin {{120}^{\circ }}=\sin \left( 90+30 \right)=\cos 30=\dfrac{\sqrt{3}}{2} \\\ & \cos {{240}^{\circ }}=\cos \left( 180+60 \right)=-\cos 60=-\dfrac{1}{2} \\\ & \sin {{240}^{\circ }}=\sin \left( 180+60 \right)=-\sin 60=-\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Using these values, we get
cosθ12cosθ32sinθ12cosθ+32sinθ=cosθcosθ32sinθ+32sinθ=0\cos \theta -\dfrac{1}{2}\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta -\dfrac{1}{2}\cos \theta +\dfrac{\sqrt{3}}{2}\sin \theta =\cos \theta -\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta +\dfrac{\sqrt{3}}{2}\sin \theta =0
We got the numerator of the fraction as zero.
Hence we can conclude that
k2(cosθ+cos(120+θ)cos(240+θ)cosθcos(120+θ)cos(240+θ))=0{{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right)=0
xy+yz+zx=0xy+yz+zx=0.
Hence statement-1 is also correct.
\therefore We can conclude that statement 1 and 2 are correct.

So, the correct answer is “Option C”.

Note: We can use a simpler way to solve the problem by writing the term cos(240+θ)\cos \left( {{240}^{\circ }}+\theta \right) as cos(360(240+θ))=cos(120θ)\cos \left( {{360}^{\circ }}-\left( {{240}^{\circ }}+\theta \right) \right)=\cos \left( {{120}^{\circ }}-\theta \right). Now the required proof for first and the second statements is the same. By checking any one of them, we can get the required answer.