Solveeit Logo

Question

Question: Consider the set $P = \{1, 2, \frac{\pi}{4}, \frac{\pi}{2}, 0\}$ and let Q be the set of all the val...

Consider the set P={1,2,π4,π2,0}P = \{1, 2, \frac{\pi}{4}, \frac{\pi}{2}, 0\} and let Q be the set of all the values of t for which the matrix A=[etetcostetsintetetcostetsintetsint+etcostet2etsint2etcost]A = \begin{bmatrix} e^t & e^{-t}cost & e^{-t}sint \\ e^t & -e^{-t}cost - e^{-t}sint & -e^{-t}sint + e^{-t}cost \\ e^t & 2e^{-t}sint & -2e^{-t}cost \end{bmatrix} is invertible, then the number of elements in PQP \cap Q is equal to

Answer

5

Explanation

Solution

To determine the number of elements in PQP \cap Q, we first need to define the set Q.

The set Q consists of all values of 't' for which the matrix A is invertible. A matrix is invertible if and only if its determinant is non-zero. So, we need to find 't' such that det(A)0\det(A) \neq 0.

The given matrix is: A=[etetcostetsintetetcostetsintetsint+etcostet2etsint2etcost]A = \begin{bmatrix} e^t & e^{-t}cost & e^{-t}sint \\ e^t & -e^{-t}cost - e^{-t}sint & -e^{-t}sint + e^{-t}cost \\ e^t & 2e^{-t}sint & -2e^{-t}cost \end{bmatrix}

Step 1: Calculate the determinant of A.

We can factor out ete^t from the first column (C1C_1), ete^{-t} from the second column (C2C_2), and ete^{-t} from the third column (C3C_3).

det(A)=etetet1costsint1costsintsint+cost12sint2cost\det(A) = e^t \cdot e^{-t} \cdot e^{-t} \begin{vmatrix} 1 & cost & sint \\ 1 & -cost - sint & -sint + cost \\ 1 & 2sint & -2cost \end{vmatrix}

det(A)=et1costsint1(cost+sint)(sintcost)12sint2cost\det(A) = e^{-t} \begin{vmatrix} 1 & cost & sint \\ 1 & -(cost + sint) & -(sint - cost) \\ 1 & 2sint & -2cost \end{vmatrix}

Step 2: Simplify the determinant using row operations.

Apply the operations: R2R2R1R_2 \rightarrow R_2 - R_1 and R3R3R1R_3 \rightarrow R_3 - R_1.

det(A)=et1costsint11(cost+sint)cost(sintcost)sint112sintcost2costsint\det(A) = e^{-t} \begin{vmatrix} 1 & cost & sint \\ 1-1 & -(cost + sint) - cost & -(sint - cost) - sint \\ 1-1 & 2sint - cost & -2cost - sint \end{vmatrix}

det(A)=et1costsint02costsint2sint+cost02sintcost2costsint\det(A) = e^{-t} \begin{vmatrix} 1 & cost & sint \\ 0 & -2cost - sint & -2sint + cost \\ 0 & 2sint - cost & -2cost - sint \end{vmatrix}

Step 3: Expand the determinant along the first column.

det(A)=et1((2costsint)(2costsint)(2sint+cost)(2sintcost))\det(A) = e^{-t} \cdot 1 \cdot \left( (-2cost - sint)(-2cost - sint) - (-2sint + cost)(2sint - cost) \right)

det(A)=et((2cost+sint)2((2sintcost))(2sintcost))\det(A) = e^{-t} \left( (2cost + sint)^2 - (-(2sint - cost))(2sint - cost) \right)

det(A)=et((2cost+sint)2+(2sintcost)2)\det(A) = e^{-t} \left( (2cost + sint)^2 + (2sint - cost)^2 \right)

Step 4: Expand and simplify the trigonometric terms.

Let's expand the squares:

(2cost+sint)2=(2cost)2+(sint)2+2(2cost)(sint)=4cos2t+sin2t+4sintcost(2cost + sint)^2 = (2cost)^2 + (sint)^2 + 2(2cost)(sint) = 4cos^2t + sin^2t + 4sintcost

(2sintcost)2=(2sint)2+(cost)22(2sint)(cost)=4sin2t+cos2t4sintcost(2sint - cost)^2 = (2sint)^2 + (cost)^2 - 2(2sint)(cost) = 4sin^2t + cos^2t - 4sintcost

Now, sum these two expressions:

(4cos2t+sin2t+4sintcost)+(4sin2t+cos2t4sintcost)(4cos^2t + sin^2t + 4sintcost) + (4sin^2t + cos^2t - 4sintcost) =4cos2t+cos2t+sin2t+4sin2t+4sintcost4sintcost= 4cos^2t + cos^2t + sin^2t + 4sin^2t + 4sintcost - 4sintcost =5cos2t+5sin2t= 5cos^2t + 5sin^2t =5(cos2t+sin2t)= 5(cos^2t + sin^2t)

Using the identity cos2t+sin2t=1cos^2t + sin^2t = 1: =5(1)=5= 5(1) = 5

Step 5: Substitute the simplified expression back into the determinant.

det(A)=et5=5et\det(A) = e^{-t} \cdot 5 = 5e^{-t}

Step 6: Determine the set Q.

For the matrix A to be invertible, det(A)0\det(A) \neq 0.

So, 5et05e^{-t} \neq 0.

Since the exponential function ete^{-t} is always positive for any real value of tt (et>0e^{-t} > 0), 5et5e^{-t} will always be positive and thus never equal to zero.

Therefore, the matrix A is invertible for all real values of tt.

This means the set Q=RQ = \mathbb{R} (the set of all real numbers).

Step 7: Find the number of elements in PQP \cap Q.

The given set P={1,2,π4,π2,0}P = \{1, 2, \frac{\pi}{4}, \frac{\pi}{2}, 0\}.

The set Q=RQ = \mathbb{R}.

The intersection PQP \cap Q consists of all elements that are in both P and Q. Since all elements in P are real numbers, every element of P is also an element of Q.

Thus, PQ=PP \cap Q = P.

The elements of PQP \cap Q are {1,2,π4,π2,0}\{1, 2, \frac{\pi}{4}, \frac{\pi}{2}, 0\}.

The number of elements in PQP \cap Q is 5.

The final answer is 5\boxed{5}.