Solveeit Logo

Question

Question: Consider the set of complex number z satisfying $|1 + z + z^2| = 4$. The maximum value of the imagin...

Consider the set of complex number z satisfying 1+z+z2=4|1 + z + z^2| = 4. The maximum value of the imaginary part of z can be written in the form mn\sqrt{\frac{m}{n}}, where m and n are relatively prime positive integers. What is m+nm + n?

A

19

B

21

C

23

D

25

Answer

23

Explanation

Solution

We start with the equation

1+z+z2=4,\lvert 1+z+z^2\rvert = 4,

where z=x+iyz = x+iy is a complex number. Our goal is to find the maximum value of the imaginary part of zz; i.e. maximize yy.

A very useful trick is to “complete the square” in the quadratic in zz. Notice that

z2+z+1=(z+12)2+34.z^2+z+1 = \left(z+\tfrac{1}{2}\right)^2 + \tfrac{3}{4}.

Define

w=z+12.w = z+\tfrac{1}{2}.

Then the equation becomes

w2+34=4.\left|w^2 + \frac{3}{4}\right| = 4.

In this substitution the imaginary part of zz is the same as that of ww (since z=w12z = w - \tfrac{1}{2} and 12-\tfrac{1}{2} is real). Write

w=u+iv.w = u+iv.

Then

w2=(u+iv)2=u2v2+2iuv,w^2 = (u+iv)^2 = u^2-v^2+2iuv,

so that

w2+34=(u2v2+34)+2iuv.w^2 + \frac{3}{4} = \left(u^2-v^2+\frac{3}{4}\right) + 2iuv.

Thus the modulus condition becomes

(u2v2+34)2+(2uv)2=16.\left(u^2-v^2+\frac{3}{4}\right)^2 + (2uv)^2 = 16.

Rather than tackling this directly in u,vu,v, an alternative and simpler method is to “optimize” directly in z=x+iyz=x+iy. Write

1+z+z2=1+(x+iy)+(x2y2+2ixy)=(1+x+x2y2)+i(y+2xy).1+z+z^2 = 1 + (x+iy) + \bigl(x^2-y^2+2ixy\bigr) = \Bigl(1+x+x^2-y^2\Bigr) + i\Bigl(y+2xy\Bigr).

Denote

A=1+x+x2y2,B=y+2xy.A = 1+x+x^2-y^2,\quad B = y+2xy.

Thus the condition is:

A2+B2=16.A^2+B^2 = 16.

For a given yy we need the existence of real xx such that

(x2+x+(1y2))2+(y(2x+1))2=16.\bigl(x^2+x+(1-y^2)\bigr)^2 + \bigl(y(2x+1)\bigr)^2 = 16.

To find the extreme (maximum) value of yy, we require that for that yy the equation in xx has a double (repeated) solution. In other words, we consider the function:

F(x)=[x2+x+(1y2)]2+y2(2x+1)216=0,F(x)=\Bigl[x^2+x+(1-y^2)\Bigr]^2 + y^2\,(2x+1)^2 - 16 = 0,

and we require that

dFdx=0.\frac{dF}{dx}=0.

Differentiating with respect to xx,

dFdx=2[x2+x+(1y2)](2x+1)+2y2(2x+1)2.\frac{dF}{dx}= 2\Bigl[x^2+x+(1-y^2)\Bigr](2x+1)+ 2y^2\,(2x+1)\cdot 2.

Factor out the common term 2(2x+1)2(2x+1):

dFdx=2(2x+1)[x2+x+(1y2)+2y2]=2(2x+1)[x2+x+1+y2].\frac{dF}{dx}= 2(2x+1)\Bigl[x^2+x+(1-y^2)+2y^2\Bigr]=2(2x+1)\Bigl[x^2+x+1+y^2\Bigr].

Since the quadratic x2+x+1+y2x^2+x+1+y^2 is always positive for all real xx and yy (its discriminant is negative), the only possibility for a double solution is if

2x+1=0x=12.2x+1=0\quad\Longrightarrow\quad x=-\frac{1}{2}.

Substitute x=12x=-\frac{1}{2} back into the expressions. First, compute the real part:

A=x2+x+(1y2)withx=12.A=x^2+x+(1-y^2) \quad \text{with}\quad x=-\frac{1}{2}.

Calculate:

(12)212=1412=14,\left(-\frac{1}{2}\right)^2 -\frac{1}{2} = \frac{1}{4}-\frac{1}{2} = -\frac{1}{4},

so that

A=14+(1y2)=34y2.A = -\frac{1}{4} + (1-y^2) = \frac{3}{4} - y^2.

Next, the imaginary part:

B=y(2x+1)=y(2(12)+1)=y(1+1)=0.B = y\,(2x+1) = y\,(2(-\frac{1}{2})+1)= y\,( -1 + 1) = 0.

Thus the modulus condition becomes:

(34y2)2=16.\left(\frac{3}{4}-y^2\right)^2 = 16.

Taking square roots gives

34y2=±4.\frac{3}{4} - y^2 = \pm 4.

Consider the two cases:

  1. 34y2=4y2=434=134,\frac{3}{4}-y^2=4 \quad\Longrightarrow\quad -y^2 = 4 - \frac{3}{4}=\frac{13}{4}, so y2=134y^2 = -\frac{13}{4} (not possible).

  2. 34y2=4y2=34+4=34+164=194.\frac{3}{4}-y^2=-4 \quad\Longrightarrow\quad y^2 = \frac{3}{4}+4=\frac{3}{4}+\frac{16}{4}=\frac{19}{4}.

Thus,

y=±192.y=\pm\frac{\sqrt{19}}{2}.

Since we require the maximum (largest positive) imaginary part,

ymax=192.y_{\text{max}}=\frac{\sqrt{19}}{2}.

The answer is given in the form mn\sqrt{\frac{m}{n}} which matches 194\sqrt{\frac{19}{4}} with m=19m=19 and n=4n=4. Therefore,

m+n=19+4=23.m+n=19+4=23.

Below is a mermaid diagram summarizing the key steps:


Explanation (Minimal):

  1. Write 1+z+z2=(x2+x+(1y2))+i(y+2xy)1+z+z^2 = \bigl(x^2+x+(1-y^2)\bigr)+ i\bigl(y+2xy\bigr) for z=x+iyz=x+iy.
  2. For a maximum yy, the equation (x2+x+(1y2))2+(y+2xy)2=16\left(x^2+x+(1-y^2)\right)^2 + \left(y+2xy\right)^2=16 must have a double root in xx. Differentiate w.r.t. xx and set dFdx=0\frac{dF}{dx}=0. This leads to 2x+1=02x+1=0, i.e. x=12x = -\frac{1}{2}.
  3. Substitute x=12x=-\frac{1}{2} to get (34y2)2=16\left(\frac{3}{4}-y^2\right)^2 = 16, which gives y2=194y^2=\frac{19}{4}.
  4. Hence, maximum y=192=194y = \frac{\sqrt{19}}{2} = \sqrt{\frac{19}{4}}; thus m=19,  n=4m=19,\; n=4 and m+n=23m+n=23.