Solveeit Logo

Question

Question: Consider the set of complex number $A, B, C$ and $S$ defined as $A = \{z : ||z+2| - |z-2|| = 2\}$ $...

Consider the set of complex number A,B,CA, B, C and SS defined as

A={z:z+2z2=2}A = \{z : ||z+2| - |z-2|| = 2\} B={z:arg(z1z)=π2}B = \left\{z : \arg\left(\frac{z-1}{z}\right) = \frac{\pi}{2}\right\} C={z:arg(z1)=π}C = \{z : \arg(z-1) = \pi\} S={z:Re(z1z+1)=0}S = \left\{z : \operatorname{Re}\left(\frac{z-1}{z+1}\right) = 0\right\}

If z1,z2,z3Sz_1, z_2, z_3 \in S, then find the minimum value of z1+z22+z2+z32+z3+z12|z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2.

Answer

3

Explanation

Solution

The given sets are:

A={z:z+2z2=2}A = \{z : ||z+2| - |z-2|| = 2\} represents a hyperbola with foci at (2,0)(-2,0) and (2,0)(2,0) and transverse axis length 2a=22a=2. The equation is x2y23=1x^2 - \frac{y^2}{3} = 1.

B={z:arg(z1z)=π2}B = \left\{z : \arg\left(\frac{z-1}{z}\right) = \frac{\pi}{2}\right\} represents the upper semi-circle of the circle with diameter connecting 00 and 11. The equation is (x1/2)2+y2=(1/2)2(x - 1/2)^2 + y^2 = (1/2)^2 with y>0y > 0.

C={z:arg(z1)=π}C = \{z : \arg(z-1) = \pi\} represents the ray on the real axis from -\infty to 11, i.e., {z=x+i0:x<1}\{z=x+i0 : x < 1\}.

S={z:Re(z1z+1)=0}S = \left\{z : \operatorname{Re}\left(\frac{z-1}{z+1}\right) = 0\right\} represents the circle with diameter connecting 11 and 1-1, excluding the points 11 and 1-1. The equation is x2+y2=1x^2+y^2=1, excluding z=1z=1 and z=1z=-1. This is the unit circle centered at the origin, excluding the points (1,0)(1,0) and (1,0)(-1,0).

We are given z1,z2,z3Sz_1, z_2, z_3 \in S. This means z1=z2=z3=1|z_1| = |z_2| = |z_3| = 1. We want to find the minimum value of L=z1+z22+z2+z32+z3+z12L = |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2. Using the property w2=wwˉ|w|^2 = w\bar{w} and z=1    zˉ=1/z|z|=1 \implies \bar{z} = 1/z, we have: zi+zj2=(zi+zj)(ziˉ+zjˉ)=ziziˉ+zizjˉ+zjziˉ+zjzjˉ=zi2+zizjˉ+zjziˉ+zj2|z_i + z_j|^2 = (z_i + z_j)(\bar{z_i} + \bar{z_j}) = z_i\bar{z_i} + z_i\bar{z_j} + z_j\bar{z_i} + z_j\bar{z_j} = |z_i|^2 + z_i\bar{z_j} + z_j\bar{z_i} + |z_j|^2. Since zi=1|z_i|=1 and zj=1|z_j|=1, this simplifies to 1+zizjˉ+zizjˉ+1=2+2Re(zizjˉ)1 + z_i\bar{z_j} + \overline{z_i\bar{z_j}} + 1 = 2 + 2 \operatorname{Re}(z_i\bar{z_j}).

So, L=(2+2Re(z1z2ˉ))+(2+2Re(z2z3ˉ))+(2+2Re(z3z1ˉ))L = (2 + 2 \operatorname{Re}(z_1\bar{z_2})) + (2 + 2 \operatorname{Re}(z_2\bar{z_3})) + (2 + 2 \operatorname{Re}(z_3\bar{z_1})). L=6+2(Re(z1z2ˉ)+Re(z2z3ˉ)+Re(z3z1ˉ))L = 6 + 2 (\operatorname{Re}(z_1\bar{z_2}) + \operatorname{Re}(z_2\bar{z_3}) + \operatorname{Re}(z_3\bar{z_1})).

Let zk=eiθkz_k = e^{i\theta_k} for k=1,2,3k=1, 2, 3. Then z1z2ˉ=eiθ1eiθ2=ei(θ1θ2)z_1\bar{z_2} = e^{i\theta_1}e^{-i\theta_2} = e^{i(\theta_1-\theta_2)}, so Re(z1z2ˉ)=cos(θ1θ2)\operatorname{Re}(z_1\bar{z_2}) = \cos(\theta_1-\theta_2). Similarly, Re(z2z3ˉ)=cos(θ2θ3)\operatorname{Re}(z_2\bar{z_3}) = \cos(\theta_2-\theta_3) and Re(z3z1ˉ)=cos(θ3θ1)\operatorname{Re}(z_3\bar{z_1}) = \cos(\theta_3-\theta_1).

We want to minimize L=6+2(cos(θ1θ2)+cos(θ2θ3)+cos(θ3θ1))L = 6 + 2 (\cos(\theta_1-\theta_2) + \cos(\theta_2-\theta_3) + \cos(\theta_3-\theta_1)). Let α=θ1θ2\alpha = \theta_1-\theta_2, β=θ2θ3\beta = \theta_2-\theta_3, γ=θ3θ1\gamma = \theta_3-\theta_1. Note that α+β+γ=0\alpha+\beta+\gamma = 0. We want to minimize cos(α)+cos(β)+cos(γ)\cos(\alpha) + \cos(\beta) + \cos(\gamma) subject to α+β+γ=0\alpha+\beta+\gamma=0. The sum cos(α)+cos(β)+cos(γ)\cos(\alpha) + \cos(\beta) + \cos(\gamma) is minimized when α,β,γ\alpha, \beta, \gamma are as spread out as possible, subject to their sum being 0. This typically occurs when α=β=γ=0\alpha = \beta = \gamma = 0 (maximum sum 3) or when they are angles of an equilateral triangle, i.e., α=β=γ=2π/3\alpha = \beta = \gamma = 2\pi/3 or 2π/3-2\pi/3 (sum -3/2) or when two angles are π\pi and one is 2π-2\pi (sum -1). Consider the case when z1,z2,z3z_1, z_2, z_3 form an equilateral triangle inscribed in the unit circle. Let z1=1=ei0z_1 = 1 = e^{i0}, z2=ei2π/3z_2 = e^{i2\pi/3}, z3=ei4π/3z_3 = e^{i4\pi/3}. These points are in SS since they are on the unit circle and are not 11 or 1-1. In this case, θ1=0\theta_1 = 0, θ2=2π/3\theta_2 = 2\pi/3, θ3=4π/3\theta_3 = 4\pi/3. θ1θ2=2π/3\theta_1 - \theta_2 = -2\pi/3. cos(2π/3)=1/2\cos(-2\pi/3) = -1/2. θ2θ3=2π/34π/3=2π/3\theta_2 - \theta_3 = 2\pi/3 - 4\pi/3 = -2\pi/3. cos(2π/3)=1/2\cos(-2\pi/3) = -1/2. θ3θ1=4π/30=4π/3\theta_3 - \theta_1 = 4\pi/3 - 0 = 4\pi/3. cos(4π/3)=1/2\cos(4\pi/3) = -1/2. The sum cos(θ1θ2)+cos(θ2θ3)+cos(θ3θ1)=1/2+(1/2)+(1/2)=3/2\cos(\theta_1-\theta_2) + \cos(\theta_2-\theta_3) + \cos(\theta_3-\theta_1) = -1/2 + (-1/2) + (-1/2) = -3/2.

The minimum value of cos(α)+cos(β)+cos(γ)\cos(\alpha) + \cos(\beta) + \cos(\gamma) subject to α+β+γ=0\alpha+\beta+\gamma=0 is 3/2-3/2. This occurs when α=β=γ=±2π/3\alpha=\beta=\gamma = \pm 2\pi/3. The minimum value of LL is 6+2(3/2)=63=36 + 2(-3/2) = 6 - 3 = 3.

This minimum is achieved when z1,z2,z3z_1, z_2, z_3 represent the vertices of an equilateral triangle inscribed in the unit circle. For example, z1=1,z2=ei2π/3,z3=ei4π/3z_1=1, z_2=e^{i2\pi/3}, z_3=e^{i4\pi/3}. These points are in SS.

The final answer is 3\boxed{3}.

Explanation:

The set SS is the unit circle centered at the origin, excluding points 11 and 1-1. For zSz \in S, we have z=1|z|=1. The expression to minimize is z1+z22+z2+z32+z3+z12|z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2. Using w2=wwˉ|w|^2 = w\bar{w} and zˉ=1/z\bar{z}=1/z for z=1|z|=1, the expression simplifies to 6+2(Re(z1z2ˉ)+Re(z2z3ˉ)+Re(z3z1ˉ))6 + 2(\operatorname{Re}(z_1\bar{z_2}) + \operatorname{Re}(z_2\bar{z_3}) + \operatorname{Re}(z_3\bar{z_1})). Let zk=eiθkz_k = e^{i\theta_k}. The expression becomes 6+2(cos(θ1θ2)+cos(θ2θ3)+cos(θ3θ1))6 + 2(\cos(\theta_1-\theta_2) + \cos(\theta_2-\theta_3) + \cos(\theta_3-\theta_1)). Let α=θ1θ2\alpha = \theta_1-\theta_2, β=θ2θ3\beta = \theta_2-\theta_3, γ=θ3θ1\gamma = \theta_3-\theta_1. Then α+β+γ=0\alpha+\beta+\gamma=0. The minimum value of cos(α)+cos(β)+cos(γ)\cos(\alpha) + \cos(\beta) + \cos(\gamma) subject to α+β+γ=0\alpha+\beta+\gamma=0 is 3/2-3/2, which occurs when α=β=γ=±2π/3\alpha=\beta=\gamma=\pm 2\pi/3. This corresponds to z1,z2,z3z_1, z_2, z_3 forming an equilateral triangle inscribed in the unit circle. The minimum value of the expression is 6+2(3/2)=36 + 2(-3/2) = 3.