Solveeit Logo

Question

Mathematics Question on Sequence and series

Consider the sequence a1,a2,a3,a_1, a_2, a_3, \ldots \ldots such that a1=1,a2=2a_1=1, a_2=2 and an+2=2an+1+ana_{n+2}=\frac{2}{a_{n+1}}+a_n for n=1,2,3,n =1,2,3, \ldots If (a1+1a2a3)(a2+1a3a4)(a3+1a4a5)...(a30+1a31a32)=2a(61C31)\left(\frac{a_1+\frac{1}{a_2}}{a_3}\right) \cdot\left(\frac{a_2+\frac{1}{a_3}}{a_4}\right) \cdot\left(\frac{a_3+\frac{1}{a_4}}{a_5}\right) ... \left(\frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}\right)=2^a\left({ }^{61} C_{31}\right), then α\alpha is equal to :

A

30-30

B

31-31

C

60-60

D

61-61

Answer

60-60

Explanation

Solution

The correct option is (C): -60