Solveeit Logo

Question

Question: Consider the polynomial \[f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}\]. Let \[s\] be the sum of al...

Consider the polynomial f(x)=1+2x+3x2+4x3f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}. Let ss be the sum of all distinct real roots of f(x)f\left( x \right) and let t=st = \left| s \right|. The area bounded by the curve y=f(x)y = f\left( x \right) and the lines x=0,y=0x = 0,y = 0 and x=tx = t, lies in the interval
A. (34,3)\left( {\dfrac{3}{4},3} \right)
B. (1516,525256)\left( {\dfrac{{15}}{{16}},\dfrac{{525}}{{256}}} \right)
C. (9,10)\left( {9,10} \right)
D. (0,2164)\left( {0,\dfrac{{21}}{{64}}} \right)

Explanation

Solution

First of all, find the first derivative of the given function to have the values of ss and which will lead to get the values of tt. From these intervals we can obtain the area bounded by the given curve lies in which interval.

Complete step-by-step answer :
Given polynomial is f(x)=1+2x+3x2+4x3f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.
Now consider the first derivative of f(x)f\left( x \right)

f(x)=ddx(1+2x+3x2+4x3) f(x)=2+6x+12x2>0 for all x in R  \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {1 + 2x + 3{x^2} + 4{x^3}} \right) \\\ \Rightarrow f'\left( x \right) = 2 + 6x + 12{x^2} > 0{\text{ for all }}x{\text{ in }}R \\\

Thus, f(x)f\left( x \right) is an increasing function on RR. So, f(x)f\left( x \right) can have at most one root. It is clear that f(x)f\left( x \right) cannot have a positive real root.
We have f(34)=132+27162716=12<0f\left( {\dfrac{{ - 3}}{4}} \right) = 1 - \dfrac{3}{2} + \dfrac{{27}}{{16}} - \dfrac{{27}}{{16}} = - \dfrac{1}{2} < 0
And also, we have f(12)=11+3412=14>0f\left( {\dfrac{{ - 1}}{2}} \right) = 1 - 1 + \dfrac{3}{4} - \dfrac{1}{2} = \dfrac{1}{4} > 0
Since, ss is the sum of all distinct real roots of f(x)f\left( x \right) we have 34<s<\-12 - \dfrac{3}{4} < s < \- \dfrac{1}{2}
Given that t=st = \left| s \right|. So, we have 12<t<34\dfrac{1}{2} < t < \dfrac{3}{4}
Now we have to calculate the area bounded by the curve y=f(x)y = f\left( x \right) and the lines x=0,y=0x = 0,y = 0 and x=tx = t. So, we have

012f(x)<area<034f(x) 012(4x3+3x2+2x+1)dx<area<034(4x3+3x2+2x+1)dx [x4+x3+x2+x]012<area<[x4+x3+x2+x]034 116+18+14+12<area<81256+2764+916+34 1516<area<525256  \Rightarrow \int\limits_0^{\dfrac{1}{2}} {f\left( x \right) < area < } \int\limits_0^{\dfrac{3}{4}} {f\left( x \right)} \\\ \Rightarrow \int\limits_0^{\dfrac{1}{2}} {\left( {4{x^3} + 3{x^2} + 2x + 1} \right)dx < area < } \int\limits_0^{\dfrac{3}{4}} {\left( {4{x^3} + 3{x^2} + 2x + 1} \right)dx} \\\ \Rightarrow \left[ {{x^4} + {x^3} + {x^2} + x} \right]_0^{\dfrac{1}{2}} < area < \left[ {{x^4} + {x^3} + {x^2} + x} \right]_0^{\dfrac{3}{4}} \\\ \Rightarrow \dfrac{1}{{16}} + \dfrac{1}{8} + \dfrac{1}{4} + \dfrac{1}{2} < area < \dfrac{{81}}{{256}} + \dfrac{{27}}{{64}} + \dfrac{9}{{16}} + \dfrac{3}{4} \\\ \therefore \dfrac{{15}}{{16}} < area < \dfrac{{525}}{{256}} \\\

Thus, the correct option is B. (1516,525256)\left( {\dfrac{{15}}{{16}},\dfrac{{525}}{{256}}} \right)

Note : If a<x<ba < x < b then b<x<\-a - b < \left| x \right| < \- a. A function is said to be increasing when y-value increases as the x-value increases and a function is said to be decreasing when y-value decreases as the x-value decreases.