Solveeit Logo

Question

Question: Consider the planes $P_1, P_2$ and points $A(2,5,1)$ and $B(1,3,0)$ where $P_1: x+y+z=3$ $P_2: 2x+...

Consider the planes P1,P2P_1, P_2 and points A(2,5,1)A(2,5,1) and B(1,3,0)B(1,3,0) where

P1:x+y+z=3P_1: x+y+z=3

P2:2x+yz=4P_2: 2x+y-z=4

Then identify the correct statement(s)

A

Distance between line AB and points common to P1,P2P_1, P_2 is equal to 153\frac{1}{5\sqrt{3}}

B

Projection of segment AB on P1P_1 is equal to 63\frac{\sqrt{6}}{3} units

C

Projection of segment AB on P1P_1 is equal to 222\sqrt{2}

D

Area enclosed by locus of all points on P1P_1 which are at a distance of 3 units from B is equal to 26π3\frac{26\pi}{3} sq.units

Answer

A, B, D

Explanation

Solution

The problem asks us to evaluate four statements regarding two planes P1:x+y+z=3P_1: x+y+z=3, P2:2x+yz=4P_2: 2x+y-z=4 and two points A(2,5,1)A(2,5,1), B(1,3,0)B(1,3,0).

Statement A: Distance between line AB and points common to P1,P2P_1, P_2.

The points common to P1P_1 and P2P_2 form a line, which is the intersection of the two planes. The normal vectors are n1=(1,1,1)\vec{n_1}=(1,1,1) and n2=(2,1,1)\vec{n_2}=(2,1,-1). The direction vector of the intersection line L is vL=n1×n2=(2,3,1)\vec{v_L} = \vec{n_1} \times \vec{n_2} = (-2,3,-1).

To find a point on L, we solve x+y+z=3x+y+z=3 and 2x+yz=42x+y-z=4. Adding the equations gives 3x+2y=73x+2y=7. Let y=2y=2, then 3x=33x=3, x=1x=1. Substituting into x+y+z=3x+y+z=3, 1+2+z=31+2+z=3, so z=0z=0. Thus, C(1,2,0)C(1,2,0) is a point on L. The line L can be represented as rL(t)=(1,2,0)+t(2,3,1)\vec{r}_L(t) = (1,2,0) + t(-2,3,-1).

The line AB passes through A(2,5,1)A(2,5,1) and has direction vector vAB=BA=(12,35,01)=(1,2,1)\vec{v_{AB}} = B-A = (1-2, 3-5, 0-1) = (-1,-2,-1). The line AB can be represented as rAB(s)=(2,5,1)+s(1,2,1)\vec{r}_{AB}(s) = (2,5,1) + s(-1,-2,-1).

The distance between two skew lines r1=a1+tv1\vec{r}_1 = \vec{a_1} + t \vec{v_1} and r2=a2+sv2\vec{r}_2 = \vec{a_2} + s \vec{v_2} is d=(a2a1)(v1×v2)v1×v2d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{v_1} \times \vec{v_2})|}{||\vec{v_1} \times \vec{v_2}||}.

Here, a1=C(1,2,0)\vec{a_1}=C(1,2,0), v1=vL=(2,3,1)\vec{v_1}=\vec{v_L}=(-2,3,-1), a2=A(2,5,1)\vec{a_2}=A(2,5,1), v2=vAB=(1,2,1)\vec{v_2}=\vec{v_{AB}}=(-1,-2,-1).

a2a1=(21,52,10)=(1,3,1)\vec{a_2}-\vec{a_1} = (2-1, 5-2, 1-0) = (1,3,1).

v1×v2=(2,3,1)×(1,2,1)=ijk231121=i(32)j(21)+k(4+3)=(5,1,7)\vec{v_1} \times \vec{v_2} = (-2,3,-1) \times (-1,-2,-1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & -1 \\ -1 & -2 & -1 \end{vmatrix} = \mathbf{i}(-3-2) - \mathbf{j}(2-1) + \mathbf{k}(4+3) = (-5,-1,7).

v1×v2=(5)2+(1)2+72=25+1+49=75=53||\vec{v_1} \times \vec{v_2}|| = \sqrt{(-5)^2+(-1)^2+7^2} = \sqrt{25+1+49} = \sqrt{75} = 5\sqrt{3}.

(a2a1)(v1×v2)=(1,3,1)(5,1,7)=1(5)+3(1)+1(7)=53+7=1(\vec{a_2}-\vec{a_1}) \cdot (\vec{v_1} \times \vec{v_2}) = (1,3,1) \cdot (-5,-1,7) = 1(-5)+3(-1)+1(7) = -5-3+7 = -1.

The distance is d=153=153d = \frac{|-1|}{5\sqrt{3}} = \frac{1}{5\sqrt{3}}. Statement A is correct.

Statement B and C: Projection of segment AB on P1P_1.

The length of the projection of segment AB on plane P1P_1 is ABcosθ||\vec{AB}|| \cos \theta, where θ\theta is the angle between AB\vec{AB} and P1P_1. The angle between vector v\vec{v} and plane with normal n\vec{n} satisfies sinθ=vnvn\sin \theta = \frac{|\vec{v} \cdot \vec{n}|}{||\vec{v}|| ||\vec{n}||}.

AB=(1,2,1)\vec{AB} = (-1,-2,-1), AB=(1)2+(2)2+(1)2=6||\vec{AB}|| = \sqrt{(-1)^2+(-2)^2+(-1)^2} = \sqrt{6}.

Normal to P1P_1 is n1=(1,1,1)\vec{n_1}=(1,1,1), n1=12+12+12=3||\vec{n_1}|| = \sqrt{1^2+1^2+1^2} = \sqrt{3}.

ABn1=(1)(1)+(2)(1)+(1)(1)=4\vec{AB} \cdot \vec{n_1} = (-1)(1)+(-2)(1)+(-1)(1) = -4.

sinθ=463=418=432=223\sin \theta = \frac{|-4|}{\sqrt{6}\sqrt{3}} = \frac{4}{\sqrt{18}} = \frac{4}{3\sqrt{2}} = \frac{2\sqrt{2}}{3}.

cos2θ=1sin2θ=1(223)2=189=19\cos^2 \theta = 1 - \sin^2 \theta = 1 - (\frac{2\sqrt{2}}{3})^2 = 1 - \frac{8}{9} = \frac{1}{9}. Since 0θ900 \le \theta \le 90^\circ, cosθ=19=13\cos \theta = \sqrt{\frac{1}{9}} = \frac{1}{3}.

Length of projection =ABcosθ=613=63= ||\vec{AB}|| \cos \theta = \sqrt{6} \cdot \frac{1}{3} = \frac{\sqrt{6}}{3}.

Statement B is correct, and Statement C is incorrect.

Statement D: Area enclosed by locus of all points on P1P_1 which are at a distance of 3 units from B.

The locus of points at a distance of 3 units from B is a sphere centered at B(1,3,0)B(1,3,0) with radius R=3R=3. The equation is (x1)2+(y3)2+z2=9(x-1)^2+(y-3)^2+z^2=9.

The locus of points on P1P_1 at a distance of 3 units from B is the intersection of this sphere and the plane P1:x+y+z=3P_1: x+y+z=3.

The intersection is a circle if the distance from the center of the sphere B to the plane P1P_1 is less than the radius R.

Distance from B(1,3,0)B(1,3,0) to P1:x+y+z3=0P_1: x+y+z-3=0 is d=1(1)+1(3)+1(0)312+12+12=1+333=13d = \frac{|1(1)+1(3)+1(0)-3|}{\sqrt{1^2+1^2+1^2}} = \frac{|1+3-3|}{\sqrt{3}} = \frac{1}{\sqrt{3}}.

Since d=13<R=3d = \frac{1}{\sqrt{3}} < R=3, the intersection is a circle.

The radius of this circle, r, is given by r2=R2d2=32(13)2=913=2713=263r^2 = R^2 - d^2 = 3^2 - (\frac{1}{\sqrt{3}})^2 = 9 - \frac{1}{3} = \frac{27-1}{3} = \frac{26}{3}.

The radius of the circle is r=263r = \sqrt{\frac{26}{3}}.

The area enclosed by this circle is Area=πr2=π(263)=26π3Area = \pi r^2 = \pi (\frac{26}{3}) = \frac{26\pi}{3}.

Statement D is correct.

The correct statements are A, B, and D.