Solveeit Logo

Question

Question: Consider the particle traveling clockwise on the elliptical path \(\frac{x^{2}}{100}\)+ \(\frac{y^{2...

Consider the particle traveling clockwise on the elliptical path x2100\frac{x^{2}}{100}+ y225\frac{y^{2}}{25}= 1. The particle leaves the orbit at the point

(–8, 3) and travels in a straight line tangent to the ellipse.

At what point will the particle cross the y-axis:

A

(0,253)\left( 0,\frac{25}{3} \right)

B

(0,253)\left( 0, - \frac{25}{3} \right)

C

(0, 9)

D

(0,73)\left( 0,\frac{7}{3} \right)

Answer

(0,253)\left( 0,\frac{25}{3} \right)

Explanation

Solution

General points on ellipse (10 cos q, 5 sin q)

tangent xcosθ10\frac{x\cos\theta}{10}+ ysinθ5\frac{y\sin\theta}{5}= 1

through (–8, 3)

810\frac{8}{10}cos q + 35\frac{3}{5}sin q = 1

Ž sin q. 35\frac{3}{5}– cos q. 45\frac{4}{5}= 1

cos f = 35\frac{3}{5}, sin f = 45\frac{4}{5} y- coordinate

sin (q – f) = 1 = 5sinθ\frac{5}{\sin\theta}

q = π2\frac{\pi}{2}+ f = 5cosφ\frac{5}{\cos\varphi}= 253\frac{25}{3}