Solveeit Logo

Question

Question: Consider the parabola \({y^2} = 4ax\) and \({x^2} = 4by\). The straight line \({{\text{b}}^{\frac{1}...

Consider the parabola y2=4ax{y^2} = 4ax and x2=4by{x^2} = 4by. The straight line b13y+a13x+a23b23=0{{\text{b}}^{\frac{1}{3}}}y + {a^{\frac{1}{3}}}x + {a^{\frac{2}{3}}}{b^{\frac{2}{3}}} = 0

a. Touches y2=4ax{y^2} = 4ax

b. Touches x2=4by{{x}^2} = 4by

c. Intersects both parabolas in real point.

d. Touch first and intersect others

Explanation

Solution

Hint: Find tangents of both parabolas and equate the constate parts. Substitute the calculated m in any of the tangents, you’ll get the answer.

The tangent the parabola y2=4ax{y^2} = 4ax is

y=mx+am......................(1)y = mx + \dfrac{a}{m}......................\left( 1 \right)

The tangent of the parabola x2=4ay{x^2} = 4ay is

y=mxbm2...................(2)y = mx - b{m^2}...................\left( 2 \right)

Let the tangent is common to both the parabolas, therefore the constant part should be equal.

am=bm2\Rightarrow \dfrac{a}{m} = - b{m^2}

m3=ab\Rightarrow {m^3} = - \dfrac{a}{b}

m=(ab)13(ab)13\Rightarrow m = {\left( { - \dfrac{a}{b}} \right)^{\dfrac{1}{3}}} \Rightarrow - {\left( {\dfrac{a}{b}} \right)^{\dfrac{1}{3}}}

Now put this value in any equation

\Rightarrow from equation (2)

y=mxbm2y = mx - b{m^2}

y=(ab)13xb((ab)13)2y = - {\left( {\dfrac{a}{b}} \right)^{\dfrac{1}{3}}}x - b{\left( { - {{\left( {\dfrac{a}{b}} \right)}^{\dfrac{1}{3}}}} \right)^2}

y=(ab)13xb13a23y = - {\left( {\dfrac{a}{b}} \right)^{\dfrac{1}{3}}}x - {b^{\dfrac{1}{3}}}{a^{\dfrac{2}{3}}}

yb13=a13xb23a23y{b^{\dfrac{1}{3}}} = - {a^{\dfrac{1}{3}}}x - {b^{\dfrac{2}{3}}}{a^{\dfrac{2}{3}}}

yb13+a13x+b23a23=0\Rightarrow y{b^{\dfrac{1}{3}}} + {a^{\dfrac{1}{3}}}x + {b^{\dfrac{2}{3}}}{a^{\dfrac{2}{3}}} = 0

Which is your required straight line, hence the given straight line is a common tangent to both of the parabolas. So, the straight line touches both the parabola.

\Rightarrow Option (a) and (b) both are correct.

NOTE: - In this type of questions write the tangent of the parabolas and then simplify using common tangent property.