Solveeit Logo

Question

Question: Consider the number \[N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\] then: A. \(...

Consider the number N=(106)85(85)106N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}} then:
A. NN is divisible by 7
B. NN is not divisible by 7
C. NN is prime
D. None of these

Explanation

Solution

First write the number NN in the form of (105+1)85(84+1)106{\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}. Then expand both the terms binomially by using the formula (x+1)n=nC0xn+nC1xn1+nC2xn2+....+nCnx0{\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}. Then simplify the number further and check whether 7 can be taken out from it or not.

Complete step-by-step answer:
According to the question, the given number is:
N=(106)85(85)106\Rightarrow N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}
First, we will rewrite the above number as:
N=(105+1)85(84+1)106\Rightarrow N = {\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}
Now, we use binomial expansion of (1+x)n{\left( {1 + x} \right)^n}. As we know that:
(x+1)n=nC0xn+nC1xn1+nC2xn2+....+nCnx0\Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}
Applying this expansion for NN, we’ll get:
N=[85C0(105)85+85C1(105)84+...+85C84][106C0(84)106+....106C10584+106C106]\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + {}^{85}{C_{84}}} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + {}^{106}{C_{106}}} \right]
We know that nCn=1{}^n{C_n} = 1. From this we have 85C85=106C106=1{}^{85}{C_{85}} = {}^{106}{C_{106}} = 1. Using these values, we’ll get:
N=[85C0(105)85+85C1(105)84+...+1][106C0(84)106+....106C10584+1]\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + 1} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + 1} \right]
This can be further simplified as:

N=[85C0(105)85+85C1(105)84+...]+1[106C0(84)106+....106C10584]1 N=[85C0(105)85+85C1(105)84+...][106C0(84)106+....106C10584]  \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] + 1 - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] - 1 \\\ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] \\\

In the above number, 105 can be taken as common from the first term and 84 can be taken as common from the second term. So we have:
N=105[85C0(105)84+85C1(105)83+...]84[106C0(84)105+....106C105]\Rightarrow N = 105\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 84\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]
Taking 7 outside from the complete number as both 105 and 84 are multiple of 7, we’ll get:
N=7(15[85C0(105)84+85C1(105)83+...]12[106C0(84)105+....106C105])\Rightarrow N = 7\left( {15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]} \right)
Now, let 15[85C0(105)84+85C1(105)83+...]12[106C0(84)105+....106C105]=k15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right] = k, where kk is a natural number. Then we have:
N=7k\Rightarrow N = 7k
Therefore we can see that the number NN is divisible by 7.

(A) is the correct option.

Note: For checking divisibility, binomial theorem comes in handy if the number can be transformed in the form of (x±1)n{\left( {x \pm 1} \right)^n} because in such cases the last term becomes (1)n{\left( { - 1} \right)^n} which can be easily managed.
The expansion of (x±1)n{\left( {x \pm 1} \right)^n} is done by using the formula:

(x+1)n=nC0xn+nC1xn1+nC2xn2+....+nCnx0 (x1)n=nC0xnnC1xn1+nC2xn2+....+(1)nnCnx0  \Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0} \\\ \Rightarrow {\left( {x - 1} \right)^n} = {}^n{C_0}{x^n} - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0} \\\