Solveeit Logo

Question

Question: Consider the number 21600. Find the sum of its divisors....

Consider the number 21600. Find the sum of its divisors.

Explanation

Solution

Hint: Factorize the given number in its prime factor form. If a number can be written as p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c...., where p1,p2{p_1},{p_2} and p3{p_3} are prime numbers, then the sum of its divisors will be p1a+11p11×p2b+11p21×p3c+11p31×....\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times .... Use this formula to find out the sum of the divisors.

Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
21600=216×100 21600=63×100 21600=(2×3)3×4×25 21600=23×33×22×52 21600=25×33×52  \Rightarrow 21600 = 216 \times 100 \\\ \Rightarrow 21600 = {6^3} \times 100 \\\ \Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\\ \Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\\ \Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\\

Thus, the number is factorized in its prime factor form.
We know that if a number can be written as p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c...., where p1,p2{p_1},{p_2} and p3{p_3} are prime numbers, then the sum of its divisors will be p1a+11p11×p2b+11p21×p3c+11p31×....\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....

Using above formula for 21600=25×33×5221600 = {2^5} \times {3^3} \times {5^2}, we’ll get:
\Rightarrow Sum of divisors =25+1121×33+1131×52+1151 = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}
\Rightarrow Sum of divisors =26121×34131×53151=6411×8112×12514 = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}
\Rightarrow Sum of divisors =63×802×1244=63×40×31 = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31
\Rightarrow Sum of divisors =78120 = 78120

Therefore, the sum of the divisors of 21600 is 78120.

Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c...., where p1,p2{p_1},{p_2} and p3{p_3} are prime numbers, then the number of factors of this number is (a+1)×(b+1)×(c+1)×...\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...
Thus, the number of factors of 21600=25×33×5221600 = {2^5} \times {3^3} \times {5^2} will be:
 No. of factors =(5+1)(3+1)(2+1)=6×4×3  No. of factors =72  \Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\\ \Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\\