Solveeit Logo

Question

Question: Consider the nuclear rxnx in which alpha particle collides ith stationary nitrogen to givw O17 and P...

Consider the nuclear rxnx in which alpha particle collides ith stationary nitrogen to givw O17 and Pproton. incomng alpha aprticle has KE=4MeV and outgoing proton makes 6- deg with incoming direction and has ke=2.09MeV. find Q value

A

-1.52 MeV

B

-2.00 MeV

C

-1.00 MeV

D

-0.50 MeV

Answer

-1.52 MeV

Explanation

Solution

Solution:

We are given the reaction

α(4 u)+14 ⁣N(14 u)17 ⁣O(17 u)+p(1 u)\alpha(4\text{ u}) + \,^{14}\!N(14\text{ u}) \to \,^{17}\!O(17\text{ u}) + p(1\text{ u})

with the following data (all energies in MeV):

  • Incident alpha has kinetic energy Kα=4K_\alpha = 4.
  • The proton (mass 1 u) is emitted at an angle 66^\circ with kinetic energy Kp=2.09K_p = 2.09.
  • The nitrogen target is at rest.
  • Let the oxygen recoil’s kinetic energy be KOK_O.

Step 1. Energy Conservation

The energy balance in the lab frame is

Kα+Q=Kp+KO    KO=4+Q2.09=Q+1.91.K_\alpha + Q = K_p + K_O \quad \implies \quad K_O = 4 + Q - 2.09 = Q + 1.91.

Step 2. Momentum Conservation

In the lab frame, momentum is conserved in both xx (initial beam direction) and yy directions.

Define the momenta by:

pi=2miKi.p_i = \sqrt{2m_i K_i}.
  • For the alpha: pα=244=325.657.p_\alpha = \sqrt{2 \cdot 4 \cdot 4} = \sqrt{32} \approx 5.657.
  • For the proton: pp=212.09=4.182.044.p_p = \sqrt{2 \cdot 1 \cdot 2.09} = \sqrt{4.18} \approx 2.044.
  • For the oxygen recoil: pO=217(Q+1.91)=34(Q+1.91).p_O = \sqrt{2 \cdot 17 \cdot (Q+1.91)} = \sqrt{34(Q+1.91)}.

Momentum components:

  1. Y-direction:

Since the initial momentum in yy is zero,

ppsin6=pOsinθO.p_p \sin6^\circ = p_O \sin\theta_O.

Thus,

sinθO=ppsin6pO.\sin\theta_O = \frac{p_p\sin6^\circ}{p_O}.

Using sin60.1045\sin6^\circ \approx 0.1045,

ppsin62.044×0.10450.2137.p_p\sin6^\circ \approx 2.044 \times 0.1045 \approx 0.2137.

So,

sinθO=0.213734(Q+1.91).\sin\theta_O = \frac{0.2137}{\sqrt{34(Q+1.91)}}.
  1. X-direction:
pα=ppcos6+pOcosθO.p_\alpha = p_p \cos6^\circ + p_O\cos\theta_O.

With cos60.9945\cos6^\circ \approx 0.9945,

2.044cos62.044×0.99452.034.2.044 \cos6^\circ \approx 2.044 \times 0.9945 \approx 2.034.

Thus,

5.657=2.034+34(Q+1.91)cosθO.5.657 = 2.034 + \sqrt{34(Q+1.91)}\cos\theta_O.

Also, note that

cosθO=1sin2θO=1(0.2137)234(Q+1.91).\cos\theta_O = \sqrt{1-\sin^2\theta_O} = \sqrt{1 - \frac{(0.2137)^2}{34(Q+1.91)}}.

Let

X=34(Q+1.91).X = 34(Q+1.91).

Then the xx-component equation becomes

5.657=2.034+X10.0457X,5.657 = 2.034 + \sqrt{X} \sqrt{1 - \frac{0.0457}{X}},

since 0.213720.04570.2137^2 \approx 0.0457. Rearranging,

3.623=X10.0457X.3.623 = \sqrt{X}\sqrt{1 - \frac{0.0457}{X}}.

Squaring both sides:

(3.623)2=X(10.0457X)=X0.0457.(3.623)^2 = X\left(1-\frac{0.0457}{X}\right) = X-0.0457.

So,

X=(3.623)2+0.045713.128+0.045713.1737.X = (3.623)^2 + 0.0457 \approx 13.128 + 0.0457 \approx 13.1737.

Recall X=34(Q+1.91) X = 34(Q+1.91) hence,

34(Q+1.91)=13.1737    Q+1.91=13.1737340.38746.34(Q+1.91)= 13.1737 \quad \implies \quad Q+1.91 = \frac{13.1737}{34} \approx 0.38746.

Thus,

Q0.387461.911.52254MeV.Q \approx 0.38746 - 1.91 \approx -1.52254\,\text{MeV}.

Final Answer:

Q1.52MeVQ \approx -1.52\,\text{MeV}