Solveeit Logo

Question

Question: Consider the matrices $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{bmatrix}$ and...

Consider the matrices A=[111abcbccaab]A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{bmatrix} and B=[a(b2c2)a(cb)(cb)b(c2a2)b(ac)(ac)c(a2b2)c(ba)(ba)]B = \begin{bmatrix} a(b^2-c^2) & a(c-b) & (c-b) \\ b(c^2-a^2) & b(a-c) & (a-c) \\ c(a^2-b^2) & c(b-a) & (b-a) \end{bmatrix}. Which of the following statement(s) is(are) correct?

A

The product of AA and BB is a diagonal matrix

B

The product of AA and BB is a symmetric matrix

C

Trace of ABAB is equal to 3A3|A|

Answer

A, B, C

Explanation

Solution

To determine which statements are correct, we need to analyze the product of matrices AA and BB.

  1. Calculate the determinant of matrix A:

    A=111abcbccaab=(ab)(bc)(ca)|A| = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)

  2. Calculate the product matrix C=ABC = AB.

    C11=1a(b2c2)+1b(c2a2)+1c(a2b2)=(ab)(bc)(ca)=AC_{11} = 1 \cdot a(b^2-c^2) + 1 \cdot b(c^2-a^2) + 1 \cdot c(a^2-b^2) = (a-b)(b-c)(c-a) = |A|.
    C12=1a(cb)+1b(ac)+1c(ba)=0C_{12} = 1 \cdot a(c-b) + 1 \cdot b(a-c) + 1 \cdot c(b-a) = 0.
    C13=1(cb)+1(ac)+1(ba)=0C_{13} = 1 \cdot (c-b) + 1 \cdot (a-c) + 1 \cdot (b-a) = 0.
    C21=aa(b2c2)+bb(c2a2)+cc(a2b2)=0C_{21} = a \cdot a(b^2-c^2) + b \cdot b(c^2-a^2) + c \cdot c(a^2-b^2) = 0.
    C22=aa(cb)+bb(ac)+cc(ba)=(ab)(bc)(ca)=AC_{22} = a \cdot a(c-b) + b \cdot b(a-c) + c \cdot c(b-a) = (a-b)(b-c)(c-a) = |A|.
    C23=a(cb)+b(ac)+c(ba)=0C_{23} = a \cdot (c-b) + b \cdot (a-c) + c \cdot (b-a) = 0.
    C31=bca(b2c2)+cab(c2a2)+abc(a2b2)=0C_{31} = bc \cdot a(b^2-c^2) + ca \cdot b(c^2-a^2) + ab \cdot c(a^2-b^2) = 0.
    C32=bca(cb)+cab(ac)+abc(ba)=0C_{32} = bc \cdot a(c-b) + ca \cdot b(a-c) + ab \cdot c(b-a) = 0.
    C33=bc(cb)+ca(ac)+ab(ba)=(ab)(bc)(ca)=AC_{33} = bc \cdot (c-b) + ca \cdot (a-c) + ab \cdot (b-a) = (a-b)(b-c)(c-a) = |A|.

  3. The product matrix is AB=[A000A000A]=AI3AB = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| I_3.

  4. Evaluate the statements:

    • A. ABAB is a diagonal matrix. (Correct, as it is of the form kIkI)
    • B. ABAB is a symmetric matrix. (Correct, as all diagonal matrices are symmetric)
    • C. Trace(ABAB) =A+A+A=3A= |A| + |A| + |A| = 3|A|. (Correct)

All statements A, B, and C are correct.