Question
Question: Consider the matrices $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{bmatrix}$ and...
Consider the matrices A=1abc1bca1cab and B=a(b2−c2)b(c2−a2)c(a2−b2)a(c−b)b(a−c)c(b−a)(c−b)(a−c)(b−a). Which of the following statement(s) is(are) correct?

The product of A and B is a diagonal matrix
The product of A and B is a symmetric matrix
Trace of AB is equal to 3∣A∣
A, B, C
Solution
To determine which statements are correct, we need to analyze the product of matrices A and B.
-
Calculate the determinant of matrix A:
∣A∣=1abc1bca1cab=(a−b)(b−c)(c−a)
-
Calculate the product matrix C=AB.
C11=1⋅a(b2−c2)+1⋅b(c2−a2)+1⋅c(a2−b2)=(a−b)(b−c)(c−a)=∣A∣.
C12=1⋅a(c−b)+1⋅b(a−c)+1⋅c(b−a)=0.
C13=1⋅(c−b)+1⋅(a−c)+1⋅(b−a)=0.
C21=a⋅a(b2−c2)+b⋅b(c2−a2)+c⋅c(a2−b2)=0.
C22=a⋅a(c−b)+b⋅b(a−c)+c⋅c(b−a)=(a−b)(b−c)(c−a)=∣A∣.
C23=a⋅(c−b)+b⋅(a−c)+c⋅(b−a)=0.
C31=bc⋅a(b2−c2)+ca⋅b(c2−a2)+ab⋅c(a2−b2)=0.
C32=bc⋅a(c−b)+ca⋅b(a−c)+ab⋅c(b−a)=0.
C33=bc⋅(c−b)+ca⋅(a−c)+ab⋅(b−a)=(a−b)(b−c)(c−a)=∣A∣. -
The product matrix is AB=∣A∣000∣A∣000∣A∣=∣A∣I3.
-
Evaluate the statements:
- A. AB is a diagonal matrix. (Correct, as it is of the form kI)
- B. AB is a symmetric matrix. (Correct, as all diagonal matrices are symmetric)
- C. Trace(AB) =∣A∣+∣A∣+∣A∣=3∣A∣. (Correct)
All statements A, B, and C are correct.