Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Consider the matrices: A=[25 3m],B=[20 m],andX=[x y].A = \begin{bmatrix} 2 & -5 \\\ 3 & m \end{bmatrix}, \quad B = \begin{bmatrix} 20 \\\ m \end{bmatrix}, \quad \text{and} \quad X = \begin{bmatrix} x \\\ y \end{bmatrix}. Let the set of all mm, for which the system of equations AX=BAX = B has a negative solution (i.e., x<0x < 0 and y<0y <0), be the interval (a,b)(a, b). Then 8abdet(A)dm8 \int_a^b |\det(A)| \, dm is equal to _____ .

Answer

Given:

A=(25 3m),B=(20 m),X=(x y)A = \begin{pmatrix} 2 & -5 \\\ 3 & m \end{pmatrix}, \quad B = \begin{pmatrix} 20 \\\ m \end{pmatrix}, \quad X = \begin{pmatrix} x \\\ y \end{pmatrix}

From the equations:

2x5y=202x - 5y = 20 (1)

3x+my=m3x + my = m (2)

We get:

y=2m602m+15y = \frac{2m - 60}{2m + 15}

For y<0y < 0, m(152,30)m \in \left(-\frac{15}{2}, 30\right).

Similarly:

x=25m2m+15x = \frac{25m}{2m + 15}

For x<0x < 0, m(152,0)m \in \left(-\frac{15}{2}, 0\right).

Thus, combining conditions:

m(152,0)m \in \left(-\frac{15}{2}, 0\right)

The determinant of matrix AA is:

A=2m+15|A| = 2m + 15

Now:

81520(2m+15)dm=8[m2+15m]15208 \int_{-\frac{15}{2}}^{0} (2m + 15) \, dm = 8 \left[ m^2 + 15m \right]_{-\frac{15}{2}}^{0}

= 8 \left\\{ \frac{225}{4} - \frac{225}{2} \right\\}

=8×2254=450= 8 \times \frac{225}{4} = 450

Final Answer: 450