Solveeit Logo

Question

Mathematics Question on complex numbers

Consider the lines L1L_1 and L2L_2 given by

L1:x12=y31=z22L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}

L2:x21=y22=z33 L_2: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}

A line L3L_3 having direction ratios 1,1,21,-1,-2, intersects L1L_1 and L2L_2 at the points PP and QQ respectively Then the length of line segment PQP Q is

A

323 \sqrt{2}

B

4

C

262 \sqrt{6}

D

434 \sqrt{3}

Answer

262 \sqrt{6}

Explanation

Solution

LetP=(2λ+1,λ+3,2λ+2)Let \,P=(2λ+1,λ+3,2λ+2)

LetQ=(μ+2,2μ+2,3μ+3)Let\, Q=(μ+2,2μ+2,3μ+3)

12λμ11=1λ2μ+11=2λ3μ12⇒\frac{12λ−μ−1​}1=\frac{−1λ−2μ+1}{-1}​=\frac{2λ−3μ−1​}{-2}
λ=μ=3P(7,6,8)and,Q(5,8,12)⇒λ=μ=3⇒P(7,6,8) \,\,and ,\,Q(5,8,12)

PQ=26PQ=2\sqrt6