Solveeit Logo

Question

Mathematics Question on complex numbers

Consider the lines L1L_1 and L2L_2 given by
L1:x12=y31=z22L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}
L2:x21=y22=z33L_2: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}
A line L3L_3 having direction ratios 1,1,21,-1,-2, intersects L1L_1 and L2L_2 at the points PP and QQ respectively Then the length of line segment PQP Q is

A

323 \sqrt{2}

B

4

C

262 \sqrt{6}

D

434 \sqrt{3}

Answer

262 \sqrt{6}

Explanation

Solution

The correct answer is (C) : 262\sqrt6
Let P = (2λ+1,λ+3,2λ+2)
Let Q = (μ+2,2μ+2,3μ+3)(\mu+2,2\mu+2,3\mu+3)
2λμ11=λ2μ11⇒\frac{2λ-\mu-1}{1}=\frac{λ-2\mu-1}{-1}
=2λ3μ12λ=μ=3=\frac{2λ-3\mu-1}{-2}⇒λ=\mu=3
P(7,6,8)⇒P(7,6,8) and Q(5,8,12)Q(5,8,12)
PQ = 262\sqrt6