Solveeit Logo

Question

Mathematics Question on 3D Geometry

Consider the line LL passing through the points (1,2,3)(1, 2, 3) and (2,3,5)(2, 3, 5). The distance of the point (113,113,193)\left( \frac{11}{3}, \frac{11}{3}, \frac{19}{3} \right) from the line LL along the line 3x112=3y111=3z192\frac{3x - 11}{2} = \frac{3y - 11}{1} = \frac{3z - 19}{2} is equal to:

A

3

B

5

C

4

D

6

Answer

3

Explanation

Solution

Step 1: Direction ratios of the given line

The direction ratios of the line:

3x112=3y111=3z192\frac{3x - 11}{2} = \frac{3y - 11}{1} = \frac{3z - 19}{2}

are:

d=2,1,2\vec{d} = \langle 2, 1, 2 \rangle

Step 2: Representing point BB

Let point BB on the given line be:

B=(1+λ,2+λ,3+2λ),B = (1 + \lambda, 2 + \lambda, 3 + 2\lambda),

where λ\lambda is the parameter.

Step 3: Direction ratios of line ABAB

Point A=(113,113,193)A = \left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right). The direction ratios of ABAB are:

D.R. of AB=3λ83,3λ53,6λ103\text{D.R. of } AB = \left\langle \frac{3\lambda - 8}{3}, \frac{3\lambda - 5}{3}, \frac{6\lambda - 10}{3} \right\rangle

Step 4: Parallel condition

Since ABAB lies along the direction vector d=2,1,2\vec{d} = \langle 2, 1, 2 \rangle, we have:

3λ832=3λ531=6λ1032\frac{\frac{3\lambda - 8}{3}}{2} = \frac{\frac{3\lambda - 5}{3}}{1} = \frac{\frac{6\lambda - 10}{3}}{2}

Simplify the first ratio:

3λ832=3λ53\frac{3\lambda - 8}{3 \cdot 2} = \frac{3\lambda - 5}{3}

Cross-multiply:

3λ8=6λ103\lambda - 8 = 6\lambda - 10

Solve for λ\lambda:

3λ=2    λ=233\lambda = 2 \implies \lambda = \frac{2}{3}

Step 5: Find BB

Substitute λ=23\lambda = \frac{2}{3} into B=(1+λ,2+λ,3+2λ)B = (1 + \lambda, 2 + \lambda, 3 + 2\lambda):

B=(1+23,2+23,3+223)=(53,83,133)B = \left(1 + \frac{2}{3}, 2 + \frac{2}{3}, 3 + 2 \cdot \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{8}{3}, \frac{13}{3}\right)

Step 6: Find distance ABAB

The distance ABAB is given by:

AB=(11353)2+(11383)2+(193133)2AB = \sqrt{\left(\frac{11}{3} - \frac{5}{3}\right)^2 + \left(\frac{11}{3} - \frac{8}{3}\right)^2 + \left(\frac{19}{3} - \frac{13}{3}\right)^2}

Simplify each term:

AB=(63)2+(33)2+(63)2AB = \sqrt{\left(\frac{6}{3}\right)^2 + \left(\frac{3}{3}\right)^2 + \left(\frac{6}{3}\right)^2}

AB=22+12+22=4+1+4=9AB = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9}

Thus:

AB=3AB = 3

Final Answer:

Option(1):  3Option (1) : \; 3