Solveeit Logo

Question

Engineering Mathematics Question on Eigenvectors

Consider the line integral CF(r)dr\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}, where F(r)=xi^+yj^+zk^\mathbf{F}(\mathbf{r}) = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}}, with i^,j^,\hat{\mathbf{i}}, \hat{\mathbf{j}}, and k^\hat{\mathbf{k}} as unit vectors in the (x, y, z) Cartesian coordinate system. The path CC is given by r(t)=cos(t)i^+sin(t)j^+tk^\mathbf{r}(t) = \cos(t) \hat{\mathbf{i}} + \sin(t) \hat{\mathbf{j}} + t \hat{\mathbf{k}}, where 0tπ0 \leq t \leq \pi. The value of the integral, rounded off to 2 decimal places, is _____

Answer

The correct Answers is :4.91 or 4.95 Approx