Solveeit Logo

Question

Electromagnetic Theory Question on Motional EMF

Consider the Lagrangian L=mx˙y˙mw02zxyL = m\dot{x}\dot{y} - mw_0^2 zxy. If pxp_x and pyp_y denote the generalized momenta conjugate to xx and yy, respectively, then the canonical equations of motion are _______.

A

x˙=Pxm\dot{x} = \frac{P_x}{m} , Px˙=mw02x\dot{P_x} = -mw_0^2 x , y˙=Pym\dot{y} = \frac{P_y}{m} , Py˙=mw02y\dot{P_y} = -mw_0^2 y

B

x˙=Pxm\dot{x} = \frac{P_x}{m} , Px˙=mw02x\dot{P_x} = mw_0^2 x , y˙=Pym\dot{y} = \frac{P_y}{m} , Py˙=mw02y\dot{P_y} = mw_0^2 y

C

x˙=Pym\dot{x} = \frac{P_y}{m} , Px˙=mw02y\dot{P_x} = -mw_0^2 y , y˙=Pxm\dot{y} = \frac{P_x}{m} , Py˙=mw02x\dot{P_y} = -mw_0^2 x

D

x˙=Pym\dot{x} = \frac{P_y}{m} , Px˙=mw02y\dot{P_x} = mw_0^2 y , y˙=Pxm\dot{y} = \frac{P_x}{m} , Py˙=mw02x\dot{P_y} = mw_0^2 x

Answer

x˙=Pym\dot{x} = \frac{P_y}{m} , Px˙=mw02y\dot{P_x} = -mw_0^2 y , y˙=Pxm\dot{y} = \frac{P_x}{m} , Py˙=mw02x\dot{P_y} = -mw_0^2 x

Explanation

Solution

The correct option is (C) :x˙=Pym\dot{x} = \frac{P_y}{m} , Px˙=mw02y\dot{P_x} = -mw_0^2 y , y˙=Pxm\dot{y} = \frac{P_x}{m} , Py˙=mw02x\dot{P_y} = -mw_0^2 x