Solveeit Logo

Question

Mathematics Question on Integral Calculus

Consider the improper integrals
I1=1tsintetdtI_1 = \int_{1}^{\infty} \frac{t \sin t}{e^t} \, dt
and
I2=11tln(1+1t)dt.I_2 = \int_{1}^{\infty} \frac{1}{\sqrt{t}} \ln\left(1 + \frac{1}{t}\right) \, dt.
Then:

A

I1I_1 converges, but I2I_2 does NOT converge.

B

I1I_1 does NOT converge, but I2I_2 converges.

C

Both I1I_1 and I2I_2 converge.

D

Neither I1I_1 nor I2I_2 converges.

Answer

Both I1I_1 and I2I_2 converge.

Explanation

Solution

The correct option is (C): Both I1I_1 and I2I_2 converge