Solveeit Logo

Question

Question: Consider the hyperbola $9x^{2}-16y^{2}+72x-32y-16=0$. Find the following: (a) equation of auxilary c...

Consider the hyperbola 9x216y2+72x32y16=09x^{2}-16y^{2}+72x-32y-16=0. Find the following: (a) equation of auxilary circle (b) equation of director circle

Answer

(a) (x+4)2+(y+1)2=16(x+4)^2 + (y+1)^2 = 16 (b) (x+4)2+(y+1)2=7(x+4)^2 + (y+1)^2 = 7

Explanation

Solution

First, convert the hyperbola equation to standard form by completing the square: 9x216y2+72x32y16=09x^{2}-16y^{2}+72x-32y-16=0 9(x+4)216(y+1)2=1449(x+4)^2 - 16(y+1)^2 = 144 (x+4)216(y+1)29=1\frac{(x+4)^2}{16} - \frac{(y+1)^2}{9} = 1 The center is (h,k)=(4,1)(h,k) = (-4, -1), a2=16a^2 = 16, and b2=9b^2 = 9. (a) The auxiliary circle is (xh)2+(yk)2=a2(x-h)^2 + (y-k)^2 = a^2, which is (x+4)2+(y+1)2=16(x+4)^2 + (y+1)^2 = 16. (b) The director circle is (xh)2+(yk)2=a2b2(x-h)^2 + (y-k)^2 = a^2 - b^2, which is (x+4)2+(y+1)2=169=7(x+4)^2 + (y+1)^2 = 16 - 9 = 7.