Solveeit Logo

Question

Question: Consider the given trigonometric expression: if sec(x - y), sec(x), sec(x + y) are in A.P. then \(\c...

Consider the given trigonometric expression: if sec(x - y), sec(x), sec(x + y) are in A.P. then cosxsecy2=\cos x\sec \dfrac{y}{2}=
(a) ±2\pm 2
(b) ±12\pm \dfrac{1}{\sqrt{2}}
(c) ±12\pm \dfrac{1}{2}
(d) ±2\pm \sqrt{2}

Explanation

Solution

Hint: sec(x – y), sec(x), sec(x + y) are in A.P means, 2secx=sec(xy)+sec(x+y)2\sec x=\sec \left( x-y \right)+\sec \left( x+y \right).
Solve the above equation and find out the value of x and y. Then put those values in cosxsecy2\cos x\sec \dfrac{y}{2}.

Complete step-by-step solution -
It is given in the question that sec(x – y), sec(x), sec(x + y) are in A.P. We know if a series a, b, c is in AP, then b – a = c – b. Applying this in the given series, we get
secxsec(xy)=sec(x+y)secx\sec x-\sec (x-y)=\sec (x+y)-\sec x
2secx=sec(x+y)+sec(xy)\Rightarrow 2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)
We know that, secx=1cosx\sec x=\dfrac{1}{\cos x}. If we substitute cosine in the place of secant, we will get:
2cosx=1cos(x+y)+1cos(xy)\Rightarrow \dfrac{2}{\cos x}=\dfrac{1}{\cos \left( x+y \right)}+\dfrac{1}{\cos \left( x-y \right)}
Now taking the LCM, we get
2cosx=cos(xy)+cos(x+y)cos(x+y)cos(xy)\Rightarrow \dfrac{2}{\cos x}=\dfrac{\cos \left( x-y \right)+\cos \left( x+y \right)}{\cos \left( x+y \right)\cos \left( x-y \right)}
By cross multiplying the above equation, we will get:
2cos(xy)cos(x+y)=cosx[cos(x+y)+cos(xy)]\Rightarrow 2\cos \left( x-y \right)\cos \left( x+y \right)=\cos x\left[ \cos \left( x+y \right)+\cos \left( x-y \right) \right]
Now we will apply the following formulas,
cos(A+B)=cosAcosBsinAsinB,cos(AB)=cosAcosB+sinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B,\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B and
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
Therefore we have,
cos(xy+x+y)+cos(xyxy)=cosx[cosxcosysinxsiny+cosxcosy+sinxsiny]\Rightarrow \cos \left( x-y+x+y \right)+\cos \left( x-y-x-y \right)=\cos x\left[ \cos x\cos y-\sin x\sin y+\cos x\cos y+\sin x\sin y \right] By cancelling out the opposite terms we will get,
cos(2x)+cos(2y)=cosx[2cosxcosy]\Rightarrow \cos \left( 2x \right)+\cos \left( -2y \right)=\cos x\left[ 2\cos x\cos y \right]
cos(2x)+cos(2y)=2cos2xcosy\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y, by applying cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta .
Now we will apply the formula cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1 in the above expression. Therefore,
2cos2x1+2cos2y1=2cos2xcosy\Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y
We will take all the terms in left hand side,
2cos2x+2cos2y2cos2xcosy2=0\Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2{{\cos }^{2}}x\cos y-2=0
We can take 2 common from the left hand side. Therefore,
2(cos2x+cos2ycos2xcosy1)=0\Rightarrow 2\left( {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1 \right)=0
cos2x+cos2ycos2xcosy1=0\Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-{{\cos }^{2}}x\cos y-1=0
cos2x(1cosy)(1cos2y)=0\Rightarrow {{\cos }^{2}}x(1-\cos y)-\left( 1-{{\cos }^{2}}y \right)=0
Now applying the formula, a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=(a+b)(a-b), so the above equation can be written as,
cos2x(1cosy)(1cosy)(1+cosy)=0\Rightarrow {{\cos }^{2}}x\left( 1-\cos y \right)-\left( 1-\cos y \right)\left( 1+\cos y \right)=0
We can take 1cosy1-\cos y common. Therefore we have,
(1cosy)(cos2x(1+cosy))=0\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\left( 1+\cos y \right) \right)=0
(1cosy)(cos2xcosy1)=0\Rightarrow \left( 1-\cos y \right)\left( {{\cos }^{2}}x-\cos y-1 \right)=0
Either,
1cosy=0cosy=11-\cos y=0\Rightarrow \cos y=1
But we know cos(0)=1\cos ({{0}^{{}^\circ }})=1, so
y=0.....(1)\Rightarrow y=0.....(1)
Or,
cos2xcosy1=0{{\cos }^{2}}x-\cos y-1=0
If we put cosy=1\cos y=1, we will get,
cos2x11=0\Rightarrow {{\cos }^{2}}x-1-1=0
cos2x=2\Rightarrow {{\cos }^{2}}x=2
Taking square root on both sides, we get
cosx=±2.......(2)\Rightarrow \cos x=\pm \sqrt{2}.......(2)
Now we need to find out the value of cosxsec(y2)\cos x\sec \left( \dfrac{y}{2} \right).
We will use the values from (1) and (2). Therefore,
cosxsec(y2)=±2sec(02)=±2sec(0)=±2×1=±2\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}\sec \left( \dfrac{0}{2} \right)=\pm \sqrt{2}\sec \left( 0 \right)=\pm \sqrt{2}\times 1=\pm \sqrt{2}
Hence,
cosxsec(y2)=±2\cos x\sec \left( \dfrac{y}{2} \right)=\pm \sqrt{2}
Therefore, option (d) is correct.

Note: We can make mistake while simplifying the expression:
2secx=sec(x+y)+sec(xy)2\sec x=\sec \left( x+y \right)+\sec \left( x-y \right)
Apply the formulas very carefully. Even a single mistake in sign will change the value completely.
Another approach is,
cos(2x)+cos(2y)=2cos2xcosy\Rightarrow \cos \left( 2x \right)+\cos \left( 2y \right)=2{{\cos }^{2}}x\cos y
Here we can apply the formula, cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 , we get
2cos2x1+2cos2y1=2cos2xcosy 2cos2x+2cos2y2=2cos2xcosy cos2x+cos2y1=cos2xcosy cos2x+1sin2y1=cos2xcosy cos2xsin2y=cos2xcosy \begin{aligned} & \Rightarrow 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=2{{\cos }^{2}}x\cos y \\\ & \Rightarrow 2{{\cos }^{2}}x+2{{\cos }^{2}}y-2=2{{\cos }^{2}}x\cos y \\\ & \Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y-1={{\cos }^{2}}x\cos y \\\ & \Rightarrow {{\cos }^{2}}x+1-{{\sin }^{2}}y-1={{\cos }^{2}}x\cos y \\\ & \Rightarrow {{\cos }^{2}}x-{{\sin }^{2}}y={{\cos }^{2}}x\cos y \\\ \end{aligned}
Solving this equation will lead to the desired result as above.