Solveeit Logo

Question

Question: Consider the given trigonometric expression, \({{\cos }^{-1}}x=a+{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{...

Consider the given trigonometric expression, cos1x=a+tan11xbcx{{\cos }^{-1}}x=a+{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{b}}}}{cx} for x0x\le 0. Find the value of a,ba,b and cc.
(a) a=π,b=1,c=1a=\pi ,b=1,c=1
(b) a=π,b=2,c=2a=-\pi ,b=2,c=2
(c) a=π,b=1,c=2a=-\pi ,b=1,c=2
(d) a=π,b=2,c=1a=\pi ,b=2,c=1

Explanation

Solution

Change cos1{{\cos }^{-1}} into tan1{{\tan }^{-1}} by assuming xx as base and 1 as perpendicular. Take both the tan1{{\tan }^{-1}} into left hand side and use the formula tan1xtan1y=tan1(xy1+xy){{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right) to convert it into single inverse function. Assume a=±πa=\pm \pi according to the given options and accordingly compare L.H.S and R.H.S to determine the value of a,ba,b and cc.

Complete step by step answer:
We have been given, cos1x=a+tan11xbcx{{\cos }^{-1}}x=a+{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{b}}}}{cx}. We know that, cosθ=baseHypotenuse\cos \theta =\dfrac{\text{base}}{\text{Hypotenuse}}. Therefore, cos1x{{\cos }^{-1}}x will have the numerator ‘xx’ as its base and the denominator ‘1’ as its hypotenuse.

Therefore, using Pythagoras theorem: hypotenuse2=perpendicular2+base2\text {hypotenuse}^{2}=\text{perpendicular}^{2}+\text{base}^{2}, we get,
perpendicular2=hypotenuse2base2 perpendicular=hypotenuse2base2 perpendicular=1x2 \begin{aligned} & \text{perpendicular}^{2}=\text {hypotenuse}^{2}-\text{base}^{2} \\\ & \Rightarrow \text{perpendicular}=\sqrt{\text {hypotenuse}^{2}-\text{base}^{2}} \\\ & \Rightarrow \text{perpendicular}=\sqrt{1-{{x}^{2}}} \\\ \end{aligned}
cos1x=tan11x2x\therefore {{\cos }^{-1}}x={{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x}
Therefore, the equation becomes, tan11x2x=a+tan11xbcx{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x}=a+{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{b}}}}{cx}. Now,
tan11x2xtan11xbcx=a{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x}-{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{b}}}}{cx}=a
Applying the formula tan1xtan1y=tan1(xy1+xy){{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right) we get,
tan1(1x2x1xbcx1+1x2x×1xbcx)=a (1x2x1xbcx1+1x2x×1xbcx)=tana \begin{aligned} & {{\tan }^{-1}}\left( \dfrac{\dfrac{\sqrt{1-{{x}^{2}}}}{x}-\dfrac{\sqrt{1-{{x}^{b}}}}{cx}}{1+\dfrac{\sqrt{1-{{x}^{2}}}}{x}\times \dfrac{\sqrt{1-{{x}^{b}}}}{cx}} \right)=a \\\ & \Rightarrow \left( \dfrac{\dfrac{\sqrt{1-{{x}^{2}}}}{x}-\dfrac{\sqrt{1-{{x}^{b}}}}{cx}}{1+\dfrac{\sqrt{1-{{x}^{2}}}}{x}\times \dfrac{\sqrt{1-{{x}^{b}}}}{cx}} \right)=\tan a \\\ \end{aligned}
Now, when we see the given options carefully, we observe that aa is either, π or π\pi \text{ or }-\pi . We know that, tanπ=tan(π)=0\tan \pi =\tan (-\pi )=0. Therefore, tana\tan a must be zero.
(1x2x1xbcx1+1x2x×1xbcx)=0 1x2x1xbcx=0 1x2x=1xbcx \begin{aligned} & \Rightarrow \left( \dfrac{\dfrac{\sqrt{1-{{x}^{2}}}}{x}-\dfrac{\sqrt{1-{{x}^{b}}}}{cx}}{1+\dfrac{\sqrt{1-{{x}^{2}}}}{x}\times \dfrac{\sqrt{1-{{x}^{b}}}}{cx}} \right)=0 \\\ & \Rightarrow \dfrac{\sqrt{1-{{x}^{2}}}}{x}-\dfrac{\sqrt{1-{{x}^{b}}}}{cx}=0 \\\ & \Rightarrow \dfrac{\sqrt{1-{{x}^{2}}}}{x}=\dfrac{\sqrt{1-{{x}^{b}}}}{cx} \\\ \end{aligned}
Now, on comparing the left hand side and right hand side, we get,
bb’ must be 2 and ‘cc’ must be 1.

So, the correct answer is “Option d”.

Note: In the above solution we have changed cos1{{\cos }^{-1}} into tan1{{\tan }^{-1}}. We can also apply the reverse process, that is, to change tan1{{\tan }^{-1}} into cos1{{\cos }^{-1}}. But, the next problem that we will encounter is that we will get an equation that will be pretty difficult to solve. Therefore, it is always convenient to convert the different inverse functions into tan1{{\tan }^{-1}}.