Question
Question: Consider the given function, \[f(x)=\left[ \begin{matrix} \dfrac{{{\tan }^{2}}\left\\{ x \right...
Consider the given function, f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\\
1 \\\
\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}} \\\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\\
for\text{ }x=0\text{ } \\\
for\text{ }x<0\text{ } \\\
\end{matrix} \right.
where[x]is the step up function and\left\\{ x \right\\} is the fractional part function ofx, then:
(a) x→0+limf(x)=1
(b)x→0−limf(x)=1
(c) cot−1(x→0−limf(x))2=1
(d) f is continuous at x=1
Solution
Apply limit to the given function separately at point x = 0 and x = 1 and then substitute x+[x]=x, x→0limxtanx=1 and x→0limxsinx=1, simplify it further. Then check the validity of the options by using various properties of the limit.
Complete step by step answer:
We are given the function f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\\
1 \\\
\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}} \\\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\\
for\text{ }x=0\text{ } \\\
for\text{ }x<0\text{ } \\\
\end{matrix} \right.
We will apply the limit to the given function around the point x=0 under various conditions and then check the continuity of the function around the point x=1.
We know that \left\\{ x \right\\} is the function that evaluates the fractional value of x and [x] is the function that evaluates the integral value of x.
Forx>0, we have the functionf(x)such thatf\left( x \right)=\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}.
Thus, by applying the limit on the given function, we get
\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}
Now we will apply left hand limit using the formula, f(0+)=h→0lim0+hf(0+h)−f(0), we get
\begin{aligned}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ 0+h \right\\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\\
\end{aligned}
As, we know that x→0limxtanx=1, so, we get x→0limx2tan2x=1 as well.
Thus, we get \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{\left\\{ x \right\\}}^{2}}}=1.
Hence, we have the value of limit as \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1.
Now, we will consider the case x<0. For x<0, we have the function f(x) such that f\left( x \right)=\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}.
Applying the limit on the given function, we get
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}
Further simplifying the limit, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\dfrac{\cos \left\\{ x \right\\}}{\sin \left\\{ x \right\\}}} as we know that cotx=sinxcosx.
As we know that x→0limxsinx=1, we have\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\dfrac{\cos \left\\{ x \right\\}}{\sin \left\\{ x \right\\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\\{ x \right\\}}
Thus, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\\{ x \right\\}}=\sqrt{\cos 0}=1
Hence, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}=1
Now, we need to evaluate the value of
cot−1(x→0−limf(x))2
As \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}=1, we have
cot−1(x→0−limf(x))2=cot−1(1)2=cot−11=4π
Now, we will check the continuity of f at point x=1 as for x=1, we have
f(x−)=f(x+).
Thus, the functionfis continuous at x=1
So, the correct answers are “Option A, B and D”.
Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute x+[x]=x⇒[x]=x−x, in this way the process will get lengthy and chances of getting the wrong solution is there.