Solveeit Logo

Question

Question: Consider the given function, \[f(x)=\left[ \begin{matrix} \dfrac{{{\tan }^{2}}\left\\{ x \right...

Consider the given function, f(x)=\left[ \begin{matrix} \dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\\ 1 \\\ \sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}} \\\ \end{matrix}\begin{matrix} for\text{ }x>0\text{ } \\\ for\text{ }x=0\text{ } \\\ for\text{ }x<0\text{ } \\\ \end{matrix} \right.
where[x]\left[ x \right]is the step up function and\left\\{ x \right\\} is the fractional part function ofxx, then:
(a) limx0+f(x)=1\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=1
(b)limx0f(x)=1\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=1
(c) cot1(limx0f(x))2=1{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}=1
(d) f is continuous at x=1f\text{ is continuous at }x=1

Explanation

Solution

Apply limit to the given function separately at point x = 0 and x = 1 and then substitute x+[x]=x\\{x\\}+\left[ x \right]=x, limx0tanxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1 and limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1, simplify it further. Then check the validity of the options by using various properties of the limit.

Complete step by step answer:
We are given the function f(x)=\left[ \begin{matrix} \dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\\ 1 \\\ \sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}} \\\ \end{matrix}\begin{matrix} for\text{ }x>0\text{ } \\\ for\text{ }x=0\text{ } \\\ for\text{ }x<0\text{ } \\\ \end{matrix} \right.
We will apply the limit to the given function around the point x=0x=0 under various conditions and then check the continuity of the function around the point x=1x=1.
We know that \left\\{ x \right\\} is the function that evaluates the fractional value of xx and [x]\left[ x \right] is the function that evaluates the integral value of xx.
Forx>0x>0, we have the functionf(x)f(x)such thatf\left( x \right)=\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}.
Thus, by applying the limit on the given function, we get
\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}
Now we will apply left hand limit using the formula, f(0+)=limh0f(0+h)f(0)0+hf\left( {{0}^{+}} \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(0+h)-f(0)}{0+h}, we get
\begin{aligned} & \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ 0+h \right\\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\\ & \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\\ \end{aligned}
As, we know that limx0tanxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1, so, we get limx0tan2xx2=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}x}{{{x}^{2}}}=1 as well.
Thus, we get \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{\left\\{ x \right\\}}^{2}}}=1.
Hence, we have the value of limit as \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\\{ x \right\\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1.
Now, we will consider the case x<0x<0. For x<0x<0, we have the function f(x)f(x) such that f\left( x \right)=\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}.
Applying the limit on the given function, we get
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}
Further simplifying the limit, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\dfrac{\cos \left\\{ x \right\\}}{\sin \left\\{ x \right\\}}} as we know that cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}.
As we know that limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1, we have\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\dfrac{\cos \left\\{ x \right\\}}{\sin \left\\{ x \right\\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\\{ x \right\\}}
Thus, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\\{ x \right\\}}=\sqrt{\cos 0}=1
Hence, we have
\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}=1
Now, we need to evaluate the value of
cot1(limx0f(x))2{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}
As \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\\{ x \right\\}\cot \left\\{ x \right\\}}=1, we have
cot1(limx0f(x))2=cot1(1)2=cot11=π4{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}={{\cot }^{-1}}{{\left( 1 \right)}^{2}}={{\cot }^{-1}}1=\dfrac{\pi }{4}
Now, we will check the continuity of ff at point x=1x=1 as for x=1x=1, we have
f(x)=f(x+)f\left( {{x}^{-}} \right)=f\left( {{x}^{+}} \right).
Thus, the functionffis continuous at x=1x=1

So, the correct answers are “Option A, B and D”.

Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute x+[x]=x[x]=xx\\{x\\}+\left[ x \right]=x\Rightarrow \left[ x \right]=x-\\{x\\}, in this way the process will get lengthy and chances of getting the wrong solution is there.