Solveeit Logo

Question

Question: Consider the given expression \({{x}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)-i\sin \left( \...

Consider the given expression xr=cos(π3r)isin(π3r){{x}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)-i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right) , (where i=1i=\sqrt{-1} ), then the value of the given expression x1.x2..........{{x}_{1}}.{{x}_{2}}..........\infty , is
(a) 1
(b) -1
(c) -i
(d) i

Explanation

Solution

Hint: Use definition of i and Euler’s formula eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x. It is easier to convert the complex number in euler form as by using exponent property we can simplify the given expression.

Complete step-by-step solution -
Definition of i:
i is an imaginary number which is solution of an equation:
x2=1x2+1=0{{x}^{2}}=-1\Rightarrow {{x}^{2}}+1=0
Use Euler’s formula: eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x
The left-hand side can be written as cisx\text{cis}x
So, cisx=cosx+isinx\text{cis}x=\cos x+i\sin x
Let x=π2x=\dfrac{\pi }{2}
By substituting above xx value into expression, we get:
cisπ2=cosπ2+isinπ2 cisπ2=i \begin{aligned} & \text{cis}\dfrac{\pi }{2}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \\\ & \text{cis}\dfrac{\pi }{2}=i \\\ \end{aligned}
Required expression:
z1,z2......z z1=cos(π3)+isin(π3)=cisπ3 \begin{aligned} & {{z}_{1}},{{z}_{2}}......{{z}_{\infty }} \\\ & {{z}_{1}}=\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right)=cis\dfrac{\pi }{3} \\\ \end{aligned}
We know cisx=eix\text{cis}x={{e}^{ix}}
z1,z2,...........z{{z}_{1}},{{z}_{2}},...........{{z}_{\infty }} can be assumed ass
z1=a,z2=b,z3=c{{z}_{1}}=a,{{z}_{2}}=b,{{z}_{3}}=c
a can be written as
a=eiπ3a={{e}^{i\dfrac{\pi }{3}}}
b can be written as
b=eiπ32b={{e}^{i\dfrac{\pi }{{{3}^{2}}}}}
Like that nth term can be written as
tn=eiπ3n{{t}_{n}}={{e}^{i\dfrac{\pi }{{{3}^{n}}}}}
a.b.c….. is nothing but multiplication of all above terms.
Required equation turns into
ei(π3+π32+...........+)=cos(π3+π32+...........+)+isin(π3+π32+...........+){{e}^{i\left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+...........+\infty \right)}}=\cos \left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+...........+\infty \right)+i\sin \left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+...........+\infty \right)
You can observe an infinite geometric progression with the first term as π3\dfrac{\pi }{3} and common ratio as 13\dfrac{1}{3}.
If we need infinite sum of geometric progression with first term a and common ratio r, the sum s can be written as
s=a1rs=\dfrac{a}{1-r}
Case 1: Solving real part
cos(π3+π32+.........)\cos \left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+......... \right)
By applying geometric progression here, we get:

& \cos \left( \dfrac{\dfrac{\pi }{3}}{1-\dfrac{1}{3}} \right)=\cos \left( \dfrac{\pi }{2} \right) \\\ & =0 \end{aligned}$$ Case 2: Solving imaginary part $$=i\sin \left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+......... \right)$$ By applying geometric progression here, we get: $\begin{aligned} & i\sin \left( \dfrac{\dfrac{\pi }{3}}{1-\dfrac{1}{3}} \right)=i\sin \dfrac{\pi }{2} \\\ & =i \end{aligned}$ By adding them both, we get i ${{z}_{1}},{{z}_{2}},{{z}_{3}}.......{{z}_{\infty }}=i$ These i is value of required expression Option (d) is correct. Note: While using Euler’s formula be careful what to substitute in Cis and always keep $\sin x$ as imaginary if you keep $\cos x$ you may lead to wrong answer. Idea of using Cis and again using back ${{e}^{ix}}$ is just for convenience you may directly use ${{e}^{ix}}$.