Solveeit Logo

Question

Question: Consider the given expression \(\sin x+{{\sin }^{2}}x=1\) , then the value of \[{{\cos }^{2}}x+{{\co...

Consider the given expression sinx+sin2x=1\sin x+{{\sin }^{2}}x=1 , then the value of cos2x+cos4x{{\cos }^{2}}x+{{\cos }^{4}}x is
(a) 0
(b) 2
(c) 1
(d) 3

Explanation

Solution

Hint: In our question, we have to convert the term cos2x+cos4x{{\cos }^{2}}x+{{\cos }^{4}}x in terms of sine function and then we will have use sinx+sin2x=1\sin x+{{\sin }^{2}}x=1 in the modified sine function with necessary changes.

Complete step-by-step answer:
In our question, we are given that sinx+sin2x=1\sin x+{{\sin }^{2}}x=1 .We are going to use this while solving [cos2x+cos4x]\left[ {{\cos }^{2}}x+{{\cos }^{4}}x \right] part. Let us consider this equation as equation (i):
sinx+sin2x=1................(i)\sin x+{{\sin }^{2}}x=1................\left( i \right)
Now we have to solve the term cos2x+cos4x{{\cos }^{2}}x+{{\cos }^{4}}x and evaluate its value. Let its value be equal to y. Thus, we get:
y= cos2x+cos4x..................(ii)y=~co{{s}^{2}}x+{{\cos }^{4}}x..................\left( ii \right)
Now, we know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 .So from this equation we will write cos2x{{\cos }^{2}}x in terms of sin2x{{\sin }^{2}}x i.e.
cos2x=1sin2x................(iv){{\cos }^{2}}x=1-{{\sin }^{2}}x................\left( iv \right)
We will put the value of cos2x{{\cos }^{2}}x from (iv) to (ii). Thus after putting we get,
y=cos2x+(cos2x)2 y=(1sin2x)+(1sin2x)2 \begin{aligned} & y={{\cos }^{2}}x+{{\left( {{\cos }^{2}}x \right)}^{2}} \\\ & y=\left( 1-{{\sin }^{2}}x \right)+{{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\\ \end{aligned}
We will now simplify the above equation. We know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab . Here a = 1, b=sin2xb=-{{\sin }^{2}}x , thus we will get:
y=(1sin2x)+[(1)2+(sin2x)2+2(1)(sin2x)] y=1sin2x+[1+sin4x2sin2x] y=1sin2x+1+sin4x2sin2x y=23sin2x+sin4x y=24sin2x+sin2x+sin4x y=2(12sin2x)+(sin2x+sin4x)................(v) \begin{aligned} & \Rightarrow y=\left( 1-{{\sin }^{2}}x \right)+\left[ {{\left( 1 \right)}^{2}}+{{\left( -{{\sin }^{2}}x \right)}^{2}}+2\left( 1 \right)\left( -{{\sin }^{2}}x \right) \right] \\\ & \Rightarrow y=1-{{\sin }^{2}}x+\left[ 1+{{\sin }^{4}}x-2{{\sin }^{2}}x \right] \\\ & \Rightarrow y=1-{{\sin }^{2}}x+1+{{\sin }^{4}}x-2{{\sin }^{2}}x \\\ & \Rightarrow y=2-3{{\sin }^{2}}x+{{\sin }^{4}}x \\\ & \Rightarrow y=2-4{{\sin }^{2}}x+{{\sin }^{2}}x+{{\sin }^{4}}x \\\ & \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)................\left( v \right) \\\ \end{aligned} Now, we know that sinx+sin2x=1\sin x+{{\sin }^{2}}x=1 . We will square both the sides by the use of identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab where, a=sinxa=\sin x and b=sin2xb={{\sin }^{2}}x .Therefore, we get
(sinx+sin2x)2=(1)2 (sinx)2+(sin2x)2+2(sinx)(sin2x)=(1)2 sin2x+sin4x+2sin3x=1 \begin{aligned} & {{\left( \sin x+{{\sin }^{2}}x \right)}^{2}}={{\left( 1 \right)}^{2}} \\\ & {{\left( \sin x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{2}}+2\left( \sin x \right)\left( {{\sin }^{2}}x \right)={{\left( 1 \right)}^{2}} \\\ & {{\sin }^{2}}x+{{\sin }^{4}}x+2{{\sin }^{3}}x=1 \\\ \end{aligned}
Now, we will rearrange the terms. After rearranging we get:
sin2x+sin4x=12sin3x...............(vi){{\sin }^{2}}x+{{\sin }^{4}}x=1-2{{\sin }^{3}}x...............\left( vi \right)
Now, we will put the value of (sin2x+sin4x)\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right) from equation (vi) into equation (v). After doing this, we get:
y=2(12sin2x)+12sin3x y=24sin2x+12sin3x y=34sin2x2sin3x y=32sin2x2sin2x2sin3x y=32sin2x2(sin2x+sin3x) y=32sin2x2sinx(sinx+sin2x).............(vii) \begin{aligned} & \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+1-2{{\sin }^{3}}x \\\ & \Rightarrow y=2-4{{\sin }^{2}}x+1-2{{\sin }^{3}}x \\\ & \Rightarrow y=3-4{{\sin }^{2}}x-2{{\sin }^{3}}x \\\ & \Rightarrow y=3-2{{\sin }^{2}}x-2{{\sin }^{2}}x-2{{\sin }^{3}}x \\\ & \Rightarrow y=3-2{{\sin }^{2}}x-2\left( {{\sin }^{2}}x+{{\sin }^{3}}x \right) \\\ & \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( \sin x+{{\sin }^{2}}x \right).............\left( vii \right) \\\ \end{aligned}
We will put the value of (sinx+sin2x)\left( \sin x+{{\sin }^{2}}x \right) from equation (i) to equation (vii). After doing this, we get:
y=32sin2x2sinx(1) y=32sin2x2sinx y=32(sin2x+sinx)..............(viii) \begin{aligned} & \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( 1 \right) \\\ & \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x \\\ & \Rightarrow y=3-2\left( {{\sin }^{2}}x+\sin x \right)..............\left( viii \right) \\\ \end{aligned}
Again, we will put the value of (sinx+sin2x)\left( \sin x+{{\sin }^{2}}x \right) from equation (i) to equation (viii). After doing this, we will get:
y=32(1) y=32 y=1 \begin{aligned} & \Rightarrow y=3-2\left( 1 \right) \\\ & \Rightarrow y=3-2 \\\ & \Rightarrow y=1 \\\ \end{aligned}
Hence, we get the value of cos2x+cos4x=1{{\cos }^{2}}x+{{\cos }^{4}}x=1 .When we compare with the options given, we find that our answer matches option (c).
Hence option (c) is correct.

Note: The alternate method of solving this question is as follows:
We know that sinx+sin2x=1 sinx=1sin2x sinx=cos2x \begin{aligned} & \sin x+{{\sin }^{2}}x=1 \\\ & \Rightarrow \sin x=1-{{\sin }^{2}}x \\\ & \Rightarrow \sin x={{\cos }^{2}}x \\\ \end{aligned}
We will put this value in cos2x+cos4x{{\cos }^{2}}x+{{\cos }^{4}}x . After putting the value, we get:
y=cos2x+cos4x=sinx+(sinx)2=1y={{\cos }^{2}}x+{{\cos }^{4}}x=\sin x+{{\left( \sin x \right)}^{2}}=1
Hence, by this method also, the answer coming is 1.