Solveeit Logo

Question

Question: Consider the given expression \(i=\sqrt{-1}\) , then the value of the given expression \(4+5{{\left(...

Consider the given expression i=1i=\sqrt{-1} , then the value of the given expression 4+5(12+i32)334+3(12+i32)3654+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}} is equal to
(a) 1i31-i\sqrt{3}
(b) 1+i3-1+i\sqrt{3}
(c) i3i\sqrt{3}
(d) i3-i\sqrt{3}

Explanation

Solution

Hint: Convert the imaginary number which is in the terms of “i” into an expression in terms of “ ω\omega ”. And then solve the equation. We know ω\omega is a root of the equation: x3=1{{x}^{3}}=1
Finding the value of ω\omega
x31=0..........(A){{x}^{3}}-1=0..........(A)
So, we need formula of xnyn{{x}^{n}}-{{y}^{n}}

Complete step-by-step solution -
We need to prove:
anbn=(ab)(nC1bn1+........nCn(ab)n1){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)
Proof of anbn=(ab)(nC1bn1+...........+nCn(ab)n1)...........(i){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)
By Binomial theorem, we get:
(a+b)n=k=0nnCkakbnk{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}
By general algebraic knowledge, we can write “a” as:
a=[(ab)+b]a=\left[ \left( a-b \right)+b \right]
Putting this in left hand side of equation (i), we get:
anbn=[(ab)+b]nbn{{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}
By using binomial theorem in this equation, we get:
anbn=(k=0nnCk(ab)kbnkbn){{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)
At k = 0 you can see a term bn{{b}^{n}} in the summation term which gets cancelled by the last term in the equation.
By cancelling the common terms, we get:
anbn=(k=1nnCk(ab)kbnk){{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=1}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}} \right)
Now all terms are divisible by (ab)\left( a-b \right)
So, here (ab)\left( a-b \right) is a common factor.
By taking the term (ab)\left( a-b \right) common from expression we get:
anbn=(ab)(nC1bn1+...........+nCn(ab)n1){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)
Now if we assume
a=x,b=1,n=3a=x,b=1,n=3
By substituting the above, we get
x31=(x1)(x2+x+1){{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)
By substituting this into equation (A), we get:
(x1)(x2+x+1)=0\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0
The solutions of this equation:
x1=0 x=1 x2+x+1=0 \begin{aligned} & x-1=0 \\\ & \Rightarrow x=1 \\\ & {{x}^{2}}+x+1=0 \\\ \end{aligned}
So, x2+x+1=0{{x}^{2}}+x+1=0
We need the solutions of the above expression.
By basic algebraic knowledge we can say:
The solutions of equation:
ax2+bx+c=0a{{x}^{2}}+bx+c=0 are
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
By using this we know
a=1,b=1,c=1a=1,b=1,c=1
By substituting values of a, b, c into expression we get
x=1±142=1±132 x=1±i32 \begin{aligned} & x=\dfrac{-1\pm \sqrt{1-4}}{2}=\dfrac{-1\pm \sqrt{-1}\sqrt{3}}{2} \\\ & x=\dfrac{-1\pm i\sqrt{3}}{2} \\\ \end{aligned}
12+i32\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} is named as ω\omega
So, ω=12+i32\omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}
And also ω3=1.............(B){{\omega }^{3}}=1.............(B)
By substituting ω\omega into original expression, we get:
ω2+ω+1=0..............(C){{\omega }^{2}}+\omega +1=0..............(C)
By substituting ω\omega into equation (A) we get:
4+5(12+i32)334+3(12+i32)365=4+5ω334+3ω3654+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\omega }^{334}}+3{{\omega }^{365}}
By writing equation in terms of ω3{{\omega }^{3}} , we get:
4+5(12+i32)334+3(12+i32)365=4+5(ω3)111+3(ω3)121ω24+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\left( {{\omega }^{3}} \right)}^{111}}+3{{\left( {{\omega }^{3}} \right)}^{121}}{{\omega }^{2}}
By substituting equation (B) here, we get:
4+5(12+i32)334+3(12+i32)365=4+5ω+3ω24+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5\omega +3{{\omega }^{2}}
By breaking terms, we get:
4+5(12+i32)334+3(12+i32)365=3+1+3ω+2ω+3ω24+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=3+1+3\omega +2\omega +3{{\omega }^{2}}
By taking “3” common we get:
4+5(12+i32)334+3(12+i32)365=1+2ω+3(1+ω2+ω) =1+2ω\begin{aligned} & 4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+2\omega +3\left( 1+{{\omega }^{2}}+\omega \right) \\\ & =1+2\omega \end{aligned}
By substituting ω\omega value back, we get:
4+5(12+i32)334+3(12+i32)365=1+(1+3i)=3i4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+\left( -1+\sqrt{3}i \right)=\sqrt{3}i
Therefore, 4+5(12+i32)334+3(12+i32)365=3i4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=\sqrt{3}i
Option (c) is correct.

Note: If in a complex number a + ib, the ratio a : b is 1:31:\sqrt{3} always uses the concept of ω\omega . Here we can also use the conversion of a given complex number in euler form and then simplifying the Euler form,it would be an easier way to solve this type of question.