Solveeit Logo

Question

Question: Consider the function $f(x)=x^2+x^2\int_{-1}^{1}tf(t)dt+x^3\int_{-1}^{1}f(t)dt$. The reciprocal of m...

Consider the function f(x)=x2+x211tf(t)dt+x311f(t)dtf(x)=x^2+x^2\int_{-1}^{1}tf(t)dt+x^3\int_{-1}^{1}f(t)dt. The reciprocal of maximum value of f(x),x>0f(-x), x>0 is equal to

Answer

\frac{11}{5}

Explanation

Solution

Let

A=11tf(t)dt,B=11f(t)dt.A=\int_{-1}^{1} t\,f(t)\,dt,\quad B=\int_{-1}^{1} f(t)\,dt.

Then

f(x)=x2+x2A+x3B=(1+A)x2+Bx3.f(x) = x^2 + x^2 A + x^3 B = (1+A)x^2 + Bx^3.
  1. Compute A:
A=11t[(1+A)t2+Bt3]dt=(1+A)11t3dt+B11t4dt.A=\int_{-1}^{1} t\Big[(1+A)t^2+Bt^3\Big]dt=(1+A)\int_{-1}^{1}t^3dt+B\int_{-1}^{1}t^4dt.

Since 11t3dt=0\int_{-1}^{1}t^3dt=0 (odd function) and 11t4dt=25\int_{-1}^{1}t^4dt=\frac{2}{5},

A=25B.A=\frac{2}{5}B.
  1. Compute B:
B=11[(1+A)t2+Bt3]dt=(1+A)11t2dt.B=\int_{-1}^{1}\Big[(1+A)t^2+Bt^3\Big]dt=(1+A)\int_{-1}^{1}t^2dt.

With 11t2dt=23\int_{-1}^{1}t^2dt=\frac{2}{3},

B=23(1+A).B=\frac{2}{3}(1+A).

Substitute A=25BA=\frac{2}{5}B into the equation:

B=23(1+25B)=23+415B.B=\frac{2}{3}\left(1+\frac{2}{5}B\right)=\frac{2}{3}+\frac{4}{15}B.

Solve for BB:

B415B=231115B=23B=23×1511=1011.B-\frac{4}{15}B=\frac{2}{3}\quad\Longrightarrow\quad \frac{11}{15}B=\frac{2}{3}\quad\Longrightarrow\quad B=\frac{2}{3}\times\frac{15}{11}=\frac{10}{11}.

Then,

A=25×1011=411.A=\frac{2}{5}\times \frac{10}{11}=\frac{4}{11}.

Thus,

f(x)=(1+411)x2+1011x3=1511x2+1011x3.f(x)=\left(1+\frac{4}{11}\right)x^2+\frac{10}{11}x^3=\frac{15}{11}x^2+\frac{10}{11}x^3.
  1. Determine maximum of f(x)f(-x) for x>0x>0:
f(x)=1511x21011x3=111[15x210x3].f(-x)=\frac{15}{11}x^2-\frac{10}{11}x^3=\frac{1}{11}\big[15x^2-10x^3\big].

Let g(x)=15x210x3g(x)=15x^2-10x^3. Differentiating,

g(x)=30x30x2=30x(1x).g'(x)=30x-30x^2=30x(1-x).

Set g(x)=0g'(x)=0 x=0\Rightarrow x=0 or x=1x=1. For x>0x>0, maximum at x=1x=1. Thus,

max(f(x))=f(1)=111[15(1)210(1)3]=511.\max(f(-x))=f(-1)=\frac{1}{11}\big[15(1)^2-10(1)^3\big]=\frac{5}{11}.

The reciprocal of the maximum is

115.\frac{11}{5}.