Question
Question: Consider the function $f(x)=x^2+x^2\int_{-1}^{1}tf(t)dt+x^3\int_{-1}^{1}f(t)dt$. The reciprocal of m...
Consider the function f(x)=x2+x2∫−11tf(t)dt+x3∫−11f(t)dt. The reciprocal of maximum value of f(−x),x>0 is equal to
Answer
\frac{11}{5}
Explanation
Solution
Let
A=∫−11tf(t)dt,B=∫−11f(t)dt.Then
f(x)=x2+x2A+x3B=(1+A)x2+Bx3.- Compute A:
Since ∫−11t3dt=0 (odd function) and ∫−11t4dt=52,
A=52B.- Compute B:
With ∫−11t2dt=32,
B=32(1+A).Substitute A=52B into the equation:
B=32(1+52B)=32+154B.Solve for B:
B−154B=32⟹1511B=32⟹B=32×1115=1110.Then,
A=52×1110=114.Thus,
f(x)=(1+114)x2+1110x3=1115x2+1110x3.- Determine maximum of f(−x) for x>0:
Let g(x)=15x2−10x3. Differentiating,
g′(x)=30x−30x2=30x(1−x).Set g′(x)=0 ⇒x=0 or x=1. For x>0, maximum at x=1. Thus,
max(f(−x))=f(−1)=111[15(1)2−10(1)3]=115.The reciprocal of the maximum is
511.