Solveeit Logo

Question

Question: Consider the function f(x) = \(\left\{ \begin{matrix} \frac{P(x)}{x - 2}; & x \neq 2 \\ 7; & x = 2 \...

Consider the function f(x) = {P(x)x2;x27;x=2 \left\{ \begin{matrix} \frac{P(x)}{x - 2}; & x \neq 2 \\ 7; & x = 2 \end{matrix} \right.\

where P(x) is a polynomial such that P′′′(x) is identically equal to 0 and P(3) = 9. If f(x) is continuous at x = 2, then P(x) is

A

2x2 + x + 6

B

2x2 – x – 6

C

x2 + 3

D

x2 – x + 7

Answer

2x2 – x – 6

Explanation

Solution

Let P(x) = ax2 + bx + c,

then P(3) = 9, P(2) = 7 and limx2\lim _ { x \rightarrow 2 } P(x)x2\frac{P(x)}{x - 2}= 7