Solveeit Logo

Question

Question: Consider the function f(x) and g(x) defined from $\mathbb{R} \to \mathbb{R}, f(x)=\frac{x^{3}}{2}+1...

Consider the function f(x) and g(x) defined from

RR,f(x)=x32+1x0xg(t)dt,g(x)=x01f(t)dt\mathbb{R} \to \mathbb{R}, f(x)=\frac{x^{3}}{2}+1-x\int_{0}^{x}g(t)dt, g(x)=x-\int_{0}^{1}f(t)dt, then area bounded by f(x),g(x),x=0f(x), g(x), x=0 and x=2,y0x=2, y \ge 0 is pq\frac{p}{q} (p and q are coprimes), then (p + q) is equal to _____.

Answer

55

Explanation

Solution

Let C=01f(t)dtC = \int_{0}^{1}f(t)dt. Since the integral is from a constant limit to a constant limit, CC is a constant. From the definition of g(x)g(x), we have: g(x)=xCg(x) = x - C

Substitute this expression for g(x)g(x) into the equation for f(x)f(x): f(x)=x32+1x0x(tC)dtf(x)=\frac{x^{3}}{2}+1-x\int_{0}^{x}(t-C)dt

Evaluate the integral: 0x(tC)dt=[t22Ct]0x=x22Cx\int_{0}^{x}(t-C)dt = \left[\frac{t^2}{2} - Ct\right]_{0}^{x} = \frac{x^2}{2} - Cx

Substitute this back into the equation for f(x)f(x): f(x)=x32+1x(x22Cx)f(x)=\frac{x^{3}}{2}+1-x\left(\frac{x^2}{2} - Cx\right) f(x)=x32+1x32+Cx2f(x)=\frac{x^{3}}{2}+1-\frac{x^3}{2} + Cx^2 f(x)=Cx2+1f(x) = Cx^2 + 1

Now, use the definition of CC to find its value: C=01f(t)dtC = \int_{0}^{1}f(t)dt Substitute f(t)=Ct2+1f(t) = Ct^2 + 1: C=01(Ct2+1)dtC = \int_{0}^{1}(Ct^2 + 1)dt C=[Ct33+t]01C = \left[C\frac{t^3}{3} + t\right]_{0}^{1} C=(C133+1)(0+0)C = \left(C\frac{1^3}{3} + 1\right) - (0+0) C=C3+1C = \frac{C}{3} + 1

Solve for CC: CC3=1C - \frac{C}{3} = 1 2C3=1\frac{2C}{3} = 1 C=32C = \frac{3}{2}

So, the explicit forms of the functions are: f(x)=32x2+1f(x) = \frac{3}{2}x^2 + 1 g(x)=x32g(x) = x - \frac{3}{2}

We need to find the area bounded by f(x),g(x),x=0f(x), g(x), x=0 and x=2x=2, with the condition y0y \ge 0. This means we are looking for the area of the region R={(x,y)0x2,max(0,g(x))yf(x)}R = \{(x, y) \mid 0 \le x \le 2, \max(0, g(x)) \le y \le f(x)\}.

First, let's determine the relationship between f(x)f(x) and g(x)g(x). Consider f(x)g(x)f(x) - g(x): f(x)g(x)=(32x2+1)(x32)=32x2x+52f(x) - g(x) = (\frac{3}{2}x^2 + 1) - (x - \frac{3}{2}) = \frac{3}{2}x^2 - x + \frac{5}{2} The discriminant of 3x22x+53x^2 - 2x + 5 is Δ=(2)24(3)(5)=460=56<0\Delta = (-2)^2 - 4(3)(5) = 4 - 60 = -56 < 0. Since the leading coefficient is positive, f(x)g(x)f(x) - g(x) is always positive, meaning f(x)>g(x)f(x) > g(x) for all xx.

Next, find where g(x)g(x) is positive: g(x)=x32>0    x>32g(x) = x - \frac{3}{2} > 0 \implies x > \frac{3}{2}. So, g(x)g(x) is positive for x(32,2]x \in (\frac{3}{2}, 2] and negative for x[0,32)x \in [0, \frac{3}{2}).

The area is given by the integral: Area =02(f(x)max(0,g(x)))dx= \int_{0}^{2} (f(x) - \max(0, g(x))) dx

Split the integral based on the sign of g(x)g(x): Area =03/2(f(x)0)dx+3/22(f(x)g(x))dx= \int_{0}^{3/2} (f(x) - 0) dx + \int_{3/2}^{2} (f(x) - g(x)) dx

Calculate the first integral: 03/2f(x)dx=03/2(32x2+1)dx=[x32+x]03/2=(3/2)32+32=27/82+32=2716+2416=5116\int_{0}^{3/2} f(x) dx = \int_{0}^{3/2} (\frac{3}{2}x^2 + 1) dx = \left[\frac{x^3}{2} + x\right]_{0}^{3/2} = \frac{(3/2)^3}{2} + \frac{3}{2} = \frac{27/8}{2} + \frac{3}{2} = \frac{27}{16} + \frac{24}{16} = \frac{51}{16}

Calculate the second integral: 3/22(f(x)g(x))dx=3/22(32x2x+52)dx=[x32x22+52x]3/22\int_{3/2}^{2} (f(x) - g(x)) dx = \int_{3/2}^{2} \left(\frac{3}{2}x^2 - x + \frac{5}{2}\right) dx = \left[\frac{x^3}{2} - \frac{x^2}{2} + \frac{5}{2}x\right]_{3/2}^{2} At x=2x=2: 232222+52(2)=42+5=7\frac{2^3}{2} - \frac{2^2}{2} + \frac{5}{2}(2) = 4 - 2 + 5 = 7 At x=3/2x=3/2: (3/2)32(3/2)22+52(3/2)=271698+154=2718+6016=6916\frac{(3/2)^3}{2} - \frac{(3/2)^2}{2} + \frac{5}{2}(3/2) = \frac{27}{16} - \frac{9}{8} + \frac{15}{4} = \frac{27 - 18 + 60}{16} = \frac{69}{16} So, the second integral is: 76916=112166916=43167 - \frac{69}{16} = \frac{112}{16} - \frac{69}{16} = \frac{43}{16}

Total Area = 5116+4316=9416=478\frac{51}{16} + \frac{43}{16} = \frac{94}{16} = \frac{47}{8}

The area is given as pq\frac{p}{q}, where pp and qq are coprimes. Here, p=47p=47 and q=8q=8. They are coprime. We need to find p+qp+q: p+q=47+8=55p+q = 47 + 8 = 55.